化学
冠醚
电化学
乙醚
牙冠(牙科)
组合化学
无机化学
有机化学
离子
物理化学
电极
医学
牙科
作者
Dong Jiang,Jonathan P. Hill,Joel Henzie,Ho Ngoc Nam,Quan Manh Phung,Liyang Zhu,Jie Wang,Wei Xia,Yingji Zhao,Yunqing Kang,Toru Asahi,Ran Bu,Xingtao Xu,Yusuke Yamauchi
摘要
Electrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations. In our design, crown ether moieties act as confinement sites, imparting high selectivity for different monovalent cations depending on the cavity dimensions of the crown ether present. COFs electrodes prepared using the novel crown-COFs exhibit superior performance for the selective sequestration of monovalent (alkali metal) cations. Notably, 18-crown-6 ether-substituted COF (NC18-TAB-COF) shows a remarkable selectivity (14.26) for K+ over Na+ and a substantial Rb+/Na+ selectivity of 22.4. Furthermore, NCx-TAB-COFs maintain their remarkable selectivity and capacity under mixed-cation conditions. Density functional theory calculations and molecular dynamics simulations suggest that the unexpectedly high selectivity for larger cations is likely due to diverse binding modes in conjunction with the porous structure of the COFs. Given their lower dehydration-free energies and smaller hydrodynamic radii, K+, Rb+, and Cs+ more readily permeate the confined channels of COFs. In contrast, Na+ and Li+, with higher dehydration-free energies and hydrodynamic radii, diffuse into the NCx-TAB-COFs structure at a much slower rate and are bound predominantly to the surfaces of the COFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI