Effectiveness of various general large language models in clinical consensus and case analysis in dental implantology: a comparative study

健康信息学 协商一致会议 医学 计算机科学 牙科 护理部 公共卫生 图书馆学
作者
Yuepeng Wu,Yukang Zhang,Mei Xu,Jinzhi Chen,Yang Xue,Yuchen Zheng
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12911-025-02972-2
摘要

This study evaluates and compares ChatGPT-4.0, Gemini Pro 1.5(0801), Claude 3 Opus, and Qwen 2.0 72B in answering dental implant questions. The aim is to help doctors in underserved areas choose the best LLMs(Large Language Model) for their procedures, improving dental care accessibility and clinical decision-making. Two dental implant specialists with over twenty years of clinical experience evaluated the models. Questions were categorized into simple true/false, complex short-answer, and real-life case analyses. Performance was measured using precision, recall, and Bayesian inference-based evaluation metrics. ChatGPT-4 exhibited the most stable and consistent performance on both simple and complex questions. Gemini Pro 1.5(0801)performed well on simple questions but was less stable on complex tasks. Qwen 2.0 72B provided high-quality answers for specific cases but showed variability. Claude 3 opus had the lowest performance across various metrics. Statistical analysis indicated significant differences between models in diagnostic performance but not in treatment planning. ChatGPT-4 is the most reliable model for handling medical questions, followed by Gemini Pro 1.5(0801). Qwen 2.0 72B shows potential but lacks consistency, and Claude 3 Opus performs poorly overall. Combining multiple models is recommended for comprehensive medical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
炙热的白梦完成签到,获得积分10
2秒前
6秒前
左淑珍发布了新的文献求助10
6秒前
changfox完成签到,获得积分10
6秒前
7秒前
YOMU完成签到,获得积分10
10秒前
友好的天奇完成签到,获得积分10
12秒前
大模型应助炒栗子采纳,获得10
13秒前
楠楠完成签到,获得积分20
14秒前
whykm91完成签到 ,获得积分10
14秒前
16秒前
逝水完成签到 ,获得积分10
18秒前
18秒前
bc发布了新的文献求助10
21秒前
duke完成签到,获得积分10
21秒前
赤江之木完成签到 ,获得积分10
22秒前
zzh319发布了新的文献求助10
22秒前
24秒前
24秒前
迪仔完成签到 ,获得积分10
26秒前
火星上的摩托完成签到 ,获得积分10
26秒前
霍霍完成签到,获得积分10
26秒前
26秒前
27秒前
专注背包完成签到,获得积分10
27秒前
28秒前
炒栗子发布了新的文献求助10
29秒前
Muhammad完成签到,获得积分10
29秒前
30秒前
tuanhust完成签到,获得积分10
30秒前
zzh319完成签到,获得积分10
31秒前
Milo发布了新的文献求助10
33秒前
Muhammad发布了新的文献求助10
33秒前
重要的一凡完成签到,获得积分10
35秒前
jenningseastera应助呜呜哇哇采纳,获得30
36秒前
汉堡包应助blue2021采纳,获得10
37秒前
125mmD91T完成签到,获得积分10
38秒前
bc完成签到,获得积分10
39秒前
3237924531完成签到,获得积分10
39秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307