Anomal-E: A self-supervised network intrusion detection system based on graph neural networks

计算机科学 入侵检测系统 图形 人工智能 异常检测 数据挖掘 水准点(测量) 机器学习 模式识别(心理学) 理论计算机科学 大地测量学 地理
作者
Evan Caville,Wai Weng Lo,Siamak Layeghy,Marius Portmann
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:258: 110030-110030 被引量:122
标识
DOI:10.1016/j.knosys.2022.110030
摘要

This paper investigates graph neural networks (GNNs) applied for self-supervised intrusion and anomaly detection in computer networks. GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning to generalise graph representations and output embeddings. As traffic flows in computer networks naturally exhibit a graph structure, GNNs are a suitable fit in this context. The majority of current implementations of GNN-based network intrusion detection systems (NIDSs) rely on labelled network traffic. This limits the volume and structure of input traffic and restricts the NIDSs’ potential to adapt to unseen attacks. These systems also rely on the use of node features, which may reduce the detection accuracy of these systems, as important edge (packet-level) information is not leveraged. To overcome these restrictions, we present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and a graph topological structure in a self-supervised manner. This approach is, to the best of our knowledge, the first successful and practical approach to network intrusion detection that utilises network flows in a self-supervised, edge-leveraging GNN. Experimental results on two modern benchmark NIDS datasets display a significant improvement when using Anomal-E compared to raw features and other baseline algorithms. This additionally posits the potential Anomal-E has for intrusion detection on real-world network traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Vincy完成签到,获得积分10
1秒前
科研通AI6应助迷路的煎蛋采纳,获得10
3秒前
3秒前
情怀应助不要讨好十三采纳,获得10
3秒前
静好发布了新的文献求助10
4秒前
牟洪梅发布了新的文献求助10
4秒前
远志发布了新的文献求助10
5秒前
科研通AI5应助sususu采纳,获得10
5秒前
spin发布了新的文献求助10
5秒前
不想干活应助文献下载中采纳,获得10
5秒前
5秒前
6秒前
6秒前
Vincy发布了新的文献求助10
6秒前
华仔应助Carrie采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
7秒前
开心丹雪应助科研通管家采纳,获得30
7秒前
Orange应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
8秒前
学术彦祖完成签到,获得积分10
10秒前
Sun发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
ljq完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495813
求助须知:如何正确求助?哪些是违规求助? 3947740
关于积分的说明 12240774
捐赠科研通 3605381
什么是DOI,文献DOI怎么找? 1983127
邀请新用户注册赠送积分活动 1019756
科研通“疑难数据库(出版商)”最低求助积分说明 912279