癌症研究
巨噬细胞
刺
纳米颗粒
锌
医学
材料科学
化学
纳米技术
物理
生物化学
体外
热力学
有机化学
作者
Kaiting Yang,Wenbo Han,Xiaomin Jiang,András Piffkó,Jason Bugno,Chuanhui Han,Sirui Li,Hua Liang,Ziwan Xu,Wenxin Zheng,Liangliang Wang,Jiaai Wang,Xiaona Huang,Jenny P.‐Y. Ting,Yang‐Xin Fu,Wenbin Lin,Ralph R. Weichselbaum
标识
DOI:10.1038/s41565-022-01225-x
摘要
The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically ‘cold’ pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI