材料科学
分析化学(期刊)
微波食品加热
四方晶系
电介质
光电子学
晶体结构
结晶学
物理
色谱法
量子力学
化学
作者
Fang-Fang Wu,Di Zhou,Chao Du,Diming Xu,Rui‐Tao Li,Ling Zhang,Feng Qiao,Zhongqi Shi,Moustafa A. Darwish,Tao Zhou,Heli Jantunen,Ian M. Reaney
标识
DOI:10.1021/acsami.2c14627
摘要
Vanadium(V)-substituted cerium niobate [Ce(Nb1-xVx)O4, CNVx] ceramics were prepared to explore their structure-microwave (MW) property relations and application in C-band dielectric resonator antennas (DRAs). X-ray diffraction and Raman spectroscopy revealed that CNVx (0.0 ≤ x ≤ 0.4) ceramics exhibited a ferroelastic phase transition at a critical content of V (xc = 0.3) from a monoclinic fergusonite structure to a tetragonal scheelite structure (TF-S), which decreased in temperature as a function of x according to thermal expansion analysis. Optimum microwave dielectric performance was obtained for CNV0.3 with permittivity (εr) of ∼16.81, microwave quality factor (Qf) of ∼41 300 GHz (at ∼8.7 GHz), and temperature coefficient of the resonant frequency (TCF) of ∼ -3.5 ppm/°C. εr is dominated by Ce-O phonon absorption in the microwave band; Qf is mainly determined by the porosity, grain size, and proximity of TF-S; and TCF is controlled by the structural distortions associated with TF-S. Terahertz (THz) (0.20-2.00 THz, εr ∼ 12.52 ± 0.70, and tan δ ∼ 0.39 ± 0.17) and infrared measurements are consistent, demonstrating that CNVx (0.0 ≤ x ≤ 0.4) ceramics are effective in the sub-millimeter as well as MW regime. A cylindrical DRA prototype antenna fabricated from CNV0.3 resonated at 7.02 GHz (|S11| = -28.8 dB), matching simulations, with >90% radiation efficiency and 3.34-5.93 dB gain.
科研通智能强力驱动
Strongly Powered by AbleSci AI