DeceFL: A Principled Decentralized Federated Learning Framework

计算机科学 联合学习 趋同(经济学) 随机梯度下降算法 功能(生物学) 脆弱性(计算) 分布式计算 管道(软件) 人工智能 机器学习 计算机安全 进化生物学 生物 人工神经网络 经济 程序设计语言 经济增长
作者
Y. Yuan,Jun Li,Dou Jin,Zuogong Yue,Ruijuan Chen,Maolin Wang,Chen Sun,Lei Xu,Hao Feng,Xin He,Xinlei Yi,Tao Yang,Haitao Zhang,Shaochun Sui,Dawei Han
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2107.07171
摘要

Traditional machine learning relies on a centralized data pipeline, i.e., data are provided to a central server for model training. In many applications, however, data are inherently fragmented. Such a decentralized nature of these databases presents the biggest challenge for collaboration: sending all decentralized datasets to a central server raises serious privacy concerns. Although there has been a joint effort in tackling such a critical issue by proposing privacy-preserving machine learning frameworks, such as federated learning, most state-of-the-art frameworks are built still in a centralized way, in which a central client is needed for collecting and distributing model information (instead of data itself) from every other client, leading to high communication pressure and high vulnerability when there exists a failure at or attack on the central client. Here we propose a principled decentralized federated learning algorithm (DeceFL), which does not require a central client and relies only on local information transmission between clients and their neighbors, representing a fully decentralized learning framework. It has been further proven that every client reaches the global minimum with zero performance gap and achieves the same convergence rate $O(1/T)$ (where $T$ is the number of iterations in gradient descent) as centralized federated learning when the loss function is smooth and strongly convex. Finally, the proposed algorithm has been applied to a number of applications to illustrate its effectiveness for both convex and nonconvex loss functions, demonstrating its applicability to a wide range of real-world medical and industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独树叶发布了新的文献求助10
1秒前
zhangzf给sherholmes的求助进行了留言
1秒前
1秒前
周杰发布了新的文献求助10
2秒前
SciGPT应助三人行采纳,获得10
3秒前
机智的茈发布了新的文献求助10
3秒前
luo发布了新的文献求助50
3秒前
4秒前
pcr163应助一般般采纳,获得50
4秒前
小5发布了新的文献求助50
6秒前
烤鸡翅应助李明哲采纳,获得10
8秒前
ding应助Lucky采纳,获得10
8秒前
lys发布了新的文献求助10
8秒前
小张完成签到,获得积分10
9秒前
华仔应助复杂的新柔采纳,获得10
9秒前
小白菜完成签到 ,获得积分10
11秒前
老福贵儿完成签到,获得积分10
11秒前
gcy完成签到,获得积分10
12秒前
12秒前
思源应助zlzly12采纳,获得50
13秒前
lys完成签到,获得积分10
14秒前
wuyuan发布了新的文献求助10
14秒前
logan完成签到,获得积分10
15秒前
15秒前
嗯对完成签到 ,获得积分10
15秒前
17秒前
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Wenny应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
yar应助科研通管家采纳,获得10
20秒前
Meyako应助科研通管家采纳,获得10
20秒前
zzyfdc应助科研通管家采纳,获得10
20秒前
yar应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549890
求助须知:如何正确求助?哪些是违规求助? 3980168
关于积分的说明 12322675
捐赠科研通 3649157
什么是DOI,文献DOI怎么找? 2009743
邀请新用户注册赠送积分活动 1045102
科研通“疑难数据库(出版商)”最低求助积分说明 933611