Potential of physics-informed neural networks for solving fluid flow problems with parametric boundary conditions

物理 人工神经网络 流体力学 参数统计 流量(数学) 边值问题 边界(拓扑) 统计物理学 应用数学 机械 经典力学 数学分析 人工智能 量子力学 计算机科学 统计 数学
作者
Finn Lorenzen,Amin Zargaran,Uwe Janoske
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (3) 被引量:3
标识
DOI:10.1063/5.0193952
摘要

Fluid flows are present in various fields of science and engineering, so their mathematical description and modeling is of high practical importance. However, utilizing classical numerical methods to model fluid flows is often time consuming and a new simulation is needed for each modification of the domain, boundary conditions, or fluid properties. As a result, these methods have limited utility when it comes to conducting extensive parameter studies or optimizing fluid systems. By utilizing recently proposed physics-informed neural networks (PINNs), these limitations can be addressed. PINNs approximate the solution of a single or system of partial differential equations (PDEs) by artificial neural networks (ANNs). The residuals of the PDEs are used as the loss function of the ANN, while the boundary condition is imposed in a supervised manner. Hence, PDEs are solved by performing a nonconvex optimization during the training of the ANN instead of solving a system of equations. Although this relatively new method cannot yet compete with classical numerical methods in terms of accuracy for complex problems, this approach shows promising potential as it is mesh-free and suitable for parametric solution of PDE problems. This is achieved without relying on simulation data or measurement information. This study focuses on the impact of parametric boundary conditions, specifically a variable inlet velocity profile, on the flow calculations. For the first time, a physics-based penalty term to avoid the suboptimal solution along with an efficient way of imposing parametric boundary conditions within PINNs is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无一完成签到 ,获得积分0
1秒前
一颗红葡萄完成签到 ,获得积分10
8秒前
陶醉的雪柳完成签到 ,获得积分10
8秒前
经纲完成签到 ,获得积分0
10秒前
YangYue完成签到,获得积分10
13秒前
响铃完成签到,获得积分10
16秒前
WWX完成签到 ,获得积分10
16秒前
cdercder应助YangYue采纳,获得20
19秒前
19秒前
顺心醉蝶完成签到 ,获得积分10
19秒前
nn完成签到 ,获得积分10
22秒前
Xu完成签到,获得积分10
23秒前
刘怀蕊发布了新的文献求助10
23秒前
YoYo完成签到 ,获得积分10
23秒前
余味应助科研通管家采纳,获得10
25秒前
余味应助科研通管家采纳,获得10
25秒前
cdercder应助科研通管家采纳,获得10
25秒前
Yiling完成签到,获得积分10
25秒前
刘怀蕊完成签到,获得积分10
29秒前
denty完成签到,获得积分10
35秒前
40秒前
Bismarck完成签到,获得积分10
40秒前
Fashioner8351完成签到,获得积分10
40秒前
43秒前
nn关注了科研通微信公众号
44秒前
自然的衫完成签到 ,获得积分10
46秒前
猪猪完成签到 ,获得积分10
49秒前
科研执修完成签到,获得积分10
55秒前
相爱就永远在一起完成签到,获得积分10
55秒前
文心同学完成签到,获得积分0
59秒前
御风完成签到,获得积分10
1分钟前
qi0625完成签到,获得积分10
1分钟前
儒雅的千秋完成签到,获得积分10
1分钟前
欣慰的以云完成签到 ,获得积分10
1分钟前
孤鸿影98完成签到 ,获得积分10
1分钟前
小蟑螂完成签到,获得积分10
1分钟前
sscss完成签到,获得积分10
1分钟前
蕉鲁诺蕉巴纳完成签到,获得积分0
1分钟前
星海种花完成签到 ,获得积分10
1分钟前
不可靠月亮完成签到,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726