Synthesis of soundfields through irregular loudspeaker arrays based on convolutional neural networks

扬声器 卷积神经网络 计算机科学 语音识别 声学 人工智能 模式识别(心理学) 物理
作者
Luca Comanducci,Fabio Antonacci,Augusto Sarti
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2024 (1)
标识
DOI:10.1186/s13636-024-00337-7
摘要

Abstract Most soundfield synthesis approaches deal with extensive and regular loudspeaker arrays, which are often not suitable for home audio systems, due to physical space constraints. In this article, we propose a technique for soundfield synthesis through more easily deployable irregular loudspeaker arrays, i.e., where the spacing between loudspeakers is not constant, based on deep learning. The input are the driving signals obtained through a plane wave decomposition-based technique. While the considered driving signals are able to correctly reproduce the soundfield with a regular array, they show degraded performances when using irregular setups. Through a complex-valued convolutional neural network (CNN), we modify the driving signals in order to compensate the errors in the reproduction of the desired soundfield. Since no ground truth driving signals are available for the compensated ones, we train the model by calculating the loss between the desired soundfield at a number of control points and the one obtained through the driving signals estimated by the network. The proposed model must be retrained for each irregular loudspeaker array configuration. Numerical results show better reproduction accuracy with respect to the plane wave decomposition-based technique, pressure-matching approach, and linear optimizers for driving signal compensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jie_huang完成签到,获得积分10
1秒前
OUDIE完成签到,获得积分10
2秒前
2秒前
2秒前
少华完成签到,获得积分10
2秒前
桐桐应助安详凡采纳,获得10
2秒前
小白应助科研通管家采纳,获得30
3秒前
orixero应助科研通管家采纳,获得10
3秒前
小丁同学应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
小白应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
wrr应助科研通管家采纳,获得50
4秒前
小丁同学应助科研通管家采纳,获得10
4秒前
小白应助科研通管家采纳,获得10
4秒前
爆米花应助echo采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
阿强完成签到,获得积分0
5秒前
Xsmall发布了新的文献求助10
6秒前
7秒前
橘子sungua发布了新的文献求助30
8秒前
8秒前
9秒前
觅香完成签到,获得积分10
9秒前
娴娴发布了新的文献求助10
10秒前
论文多多完成签到,获得积分10
10秒前
10秒前
猪猪hero发布了新的文献求助10
12秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886703
求助须知:如何正确求助?哪些是违规求助? 3428873
关于积分的说明 10762795
捐赠科研通 3153824
什么是DOI,文献DOI怎么找? 1741266
邀请新用户注册赠送积分活动 840610
科研通“疑难数据库(出版商)”最低求助积分说明 785449