A Deep Transfer Learning Approach for Sleep Stage Classification and Sleep Apnea Detection Using Wrist-Worn Consumer Sleep Technologies

睡眠(系统调用) 睡眠呼吸暂停 学习迁移 睡眠阶段 阻塞性睡眠呼吸暂停 深度学习 计算机科学 手腕 医学 人工智能 物理医学与康复 多导睡眠图 呼吸暂停 麻醉 放射科 操作系统
作者
Mads Olsen,Jamie M. Zeitzer,Risa Nakase‐Richardson,Valerie H Musgrave,Helge B. D. Sørensen,Emmanuel Mignot,Poul Jennum
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:71 (8): 2506-2517 被引量:4
标识
DOI:10.1109/tbme.2024.3378480
摘要

Obstructive sleep apnea (OSA) is a common, underdiagnosed sleep-related breathing disorder with serious health implications Objective - We propose a deep transfer learning approach for sleep stage classification and sleep apnea (SA) detection using wrist-worn consumer sleep technologies (CST). Methods – Our model is based on a deep convolutional neural network (DNN) utilizing accelerometers and photo-plethysmography signals from nocturnal recordings. The DNN was trained and tested on internal datasets that include raw data from clinical and wrist-worn devices; external validation was performed on a hold-out test dataset containing raw data from a wrist-worn CST. Results - Training on clinical data improves performance significantly, and feature enrichment through a sleep stage stream gives only minor improvements. Raw data input outperforms feature-based input in CST datasets. The system generalizes well but performs slightly worse on wearable device data compared to clinical data. However, it excels in detecting events during REM sleep and is associated with arousal and oxygen desaturation. We found; cases that were significantly underestimated were characterized by fewer of such event associations. Conclusion - This study showcases the potential of using CSTs as alternate screening solution for undiagnosed cases of OSA. Significance - This work is significant for its development of a deep transfer learning approach using wrist-worn consumer sleep technologies, offering comprehensive validation for data utilization, and learning techniques, ultimately improving sleep apnea detection across diverse devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丝丢皮得完成签到 ,获得积分10
7秒前
不吃芹菜完成签到,获得积分10
8秒前
chen完成签到 ,获得积分10
11秒前
12秒前
丝丢皮的完成签到 ,获得积分10
12秒前
岁月荣耀发布了新的文献求助10
17秒前
18秒前
lth完成签到 ,获得积分10
20秒前
风不尽,树不静完成签到 ,获得积分10
20秒前
背书强完成签到 ,获得积分10
24秒前
27秒前
张振宇完成签到 ,获得积分10
27秒前
Echo完成签到,获得积分10
27秒前
shuangfeng1853完成签到 ,获得积分10
29秒前
朱成豪发布了新的文献求助10
30秒前
32秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
33秒前
34秒前
panpanliumin完成签到,获得积分0
36秒前
lxh发布了新的文献求助10
38秒前
善善完成签到 ,获得积分10
44秒前
ru完成签到 ,获得积分10
52秒前
cheng完成签到 ,获得积分10
57秒前
yzhilson完成签到 ,获得积分10
59秒前
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
大胆的忆寒完成签到 ,获得积分10
1分钟前
自觉的万言完成签到 ,获得积分10
1分钟前
YAN完成签到 ,获得积分10
1分钟前
Akim应助周小鱼采纳,获得10
1分钟前
1分钟前
1分钟前
周小鱼发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
徐doc完成签到 ,获得积分10
1分钟前
L1完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376342
关于积分的说明 10492639
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859