Effects of Mo content on the microstructure and mechanical properties of laser cladded FeCoCrNiMox (x = 0.2, 0.5) high-entropy alloy coatings

材料科学 微观结构 合金 高熵合金 冶金 激光器 内容(测量理论) 复合材料 光学 数学分析 物理 数学
作者
Junjun Jin,Bing Chen,Zhiyi Zhang,Yibin Wu,Zhaoyang Luo,Guoqing Gou,Wenjing Chen
出处
期刊:Surface & Coatings Technology [Elsevier BV]
卷期号:482: 130697-130697 被引量:14
标识
DOI:10.1016/j.surfcoat.2024.130697
摘要

The laser cladding additive manufacturing technology and high-entropy alloys can serve as ideal techniques and materials for the surface repair of high-speed train axles. Coatings of FeCoCrNiMox (x = 0.2, 0.5) were prepared on EA4T axle steel using laser cladding technology, and their phase, structure, and mechanical properties were analyzed using X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) characterization techniques. Additionally, the mechanical properties of the coatings were tested, and first-principles calculations were used to verify and calculate the material's mechanical performance. The research findings indicate that an increase in Mo content leads to a greater degree of lattice distortion, causing a leftward shift in diffraction peak positions. Significant differences in the microstructure from the substrate to the coating surface were observed, with columnar grain structure at the bottom of the cladding layer and equiaxed dendrites dominating the coating surface. The increase in Mo content promotes the formation of σ phase while also refining the grain size. ECCI results show that both types of coatings consist of a high-density dislocation cell structure and Mo-rich particles. With an increase in Mo content, the peak hardness of the coating increased from 456.5 HV to 469.4 HV, while the impact energy decreased from 56 J to 16 J, attributed to the increase in dislocation density and the greater quantity of σ phase. First principles calculations verified that the comprehensive mechanical properties of FeCoCrNiMo0.2 are superior, providing theoretical guidance for the optimization and design of the coatings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jade发布了新的文献求助30
刚刚
hehehe完成签到,获得积分10
刚刚
fd163c发布了新的文献求助10
刚刚
max完成签到,获得积分10
1秒前
王玦关注了科研通微信公众号
1秒前
局外人完成签到,获得积分10
2秒前
柠檬加冰发布了新的文献求助10
2秒前
图样图森破完成签到 ,获得积分10
2秒前
桃博完成签到,获得积分10
3秒前
Zeeshan完成签到,获得积分10
3秒前
mao发布了新的文献求助10
4秒前
流年发布了新的文献求助10
5秒前
SJT完成签到,获得积分10
5秒前
比亚迪士尼在逃公主完成签到,获得积分10
5秒前
Yiwaa完成签到,获得积分10
5秒前
十月天完成签到,获得积分10
5秒前
6秒前
7秒前
Zhao完成签到 ,获得积分10
7秒前
9秒前
Pipper完成签到,获得积分10
10秒前
10秒前
jason发布了新的文献求助10
11秒前
伊莎贝儿发布了新的文献求助10
11秒前
11秒前
iW完成签到 ,获得积分10
11秒前
laola完成签到,获得积分10
11秒前
阳光的友易完成签到 ,获得积分10
12秒前
隐形荟完成签到 ,获得积分10
12秒前
干焱完成签到,获得积分10
12秒前
能干的邹完成签到 ,获得积分10
12秒前
13秒前
科研通AI5应助mao采纳,获得10
13秒前
13秒前
章慕思完成签到 ,获得积分10
13秒前
隐形之玉完成签到,获得积分10
13秒前
募股小完成签到,获得积分10
13秒前
迷路初兰发布了新的文献求助10
14秒前
肖燕完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834097
求助须知:如何正确求助?哪些是违规求助? 3376554
关于积分的说明 10493831
捐赠科研通 3096024
什么是DOI,文献DOI怎么找? 1704828
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868