A multi-center MRI dataset for bladder cancer and baseline evaluations of federated learning in its clinical application

基线(sea) 中心(范畴论) 膀胱癌 医学物理学 癌症 医学 人工智能 计算机科学 内科学 政治学 化学 结晶学 法学
作者
School of Biomedical Engineering .Medical AI Lab,School of Biomedical Engineering .Guangdong Key Laboratory of Biomedical Measurements and …,The Tenth Affiliated Hospital of Southern Medical University .Department of Radiology,Sun Yat-Sen University Cancer Center .Imaging Department,Affiliated Zhuhai Hospital .Department of Radiology,Fifth Affiliated Hospital of Sun Yat-Sen University .Department of Radiology,Macao Polytechnic University .Faculty of Applied Sciences
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.10409144
摘要

Bladder cancer (BCa), as the most common malignant tumor of the urinary system, has received significant attention in research on the clinical application of artificial intelligence algorithms. Nevertheless, it has been observed that certain investigations employ data from diverse medical facilities to train models for BCa, thereby posing a potential risk of leaking patients' privacy. Ensuring the privacy of patients during the training of machine learning algorithms is a vital consideration that deserves significant attention. Federated learning (FL) is an emerging machine learning paradigm that enables multiple entities to collaboratively build machine learning models while preserving data privacy and security. In this study, we present a multi-center BCa magnetic resonance imaging (MRI) dataset, aimed at evaluating the baseline performance of FL. The dataset comprises 275 three-dimensional bladder T2-weighted MRI scans collected from four medical centers, and each scan includes diagnostic pathological labels for muscle invasion and fine pixel-level annotations of tumor contours. Four FL methods are used to assess the baseline of the dataset for both the task of diagnosing muscle-invasive bladder cancer and automatic bladder tumor lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中草药完成签到,获得积分10
刚刚
刚刚
dy__完成签到,获得积分20
2秒前
无限的水壶完成签到 ,获得积分10
2秒前
乐乐应助王桐采纳,获得10
3秒前
3秒前
猪猪hero完成签到,获得积分10
3秒前
3秒前
wualexandra完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
Raymond完成签到,获得积分0
5秒前
秦艽完成签到,获得积分10
6秒前
春樹暮雲完成签到 ,获得积分10
6秒前
7秒前
Janina完成签到,获得积分10
9秒前
10秒前
核桃发布了新的文献求助10
10秒前
10秒前
CHEN02发布了新的文献求助10
10秒前
WuchangI完成签到,获得积分10
11秒前
科研通AI5应助任生平采纳,获得10
11秒前
香蕉书竹完成签到,获得积分10
12秒前
流北爷完成签到,获得积分10
12秒前
老神在在完成签到,获得积分10
12秒前
天天快乐应助碧蓝的安柏采纳,获得10
13秒前
13秒前
史俊美完成签到 ,获得积分20
13秒前
13秒前
传奇3应助画家采纳,获得10
13秒前
坦率如柏完成签到,获得积分10
15秒前
派大星完成签到,获得积分10
15秒前
嗯_好完成签到,获得积分20
15秒前
陈洋发布了新的文献求助10
15秒前
土豆子完成签到,获得积分10
16秒前
不安钢铁侠完成签到,获得积分10
16秒前
16秒前
WELXCNK完成签到,获得积分10
16秒前
Szw666完成签到,获得积分10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
Logical form: From GB to Minimalism 500
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4185374
求助须知:如何正确求助?哪些是违规求助? 3721253
关于积分的说明 11725543
捐赠科研通 3399456
什么是DOI,文献DOI怎么找? 1865229
邀请新用户注册赠送积分活动 922619
科研通“疑难数据库(出版商)”最低求助积分说明 834094