Machine Learning for Road Vehicle Aerodynamics

空气动力学 计算机科学 汽车工程 航空学 航空航天工程 车辆动力学 工程类
作者
V. Ananthan,Neil Ashton,Nate Chadwick,Mariano Lizarraga,Danielle C. Maddix,Satheesh Maheswaran,Pablo Hermoso Moreno,Parisa M. Shabestari,Sandeep Sovani,Shreyas Subramanian,Srinivas Tadepalli,Peter T. Yu
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2529
摘要

<div class="section abstract"><div class="htmlview paragraph">This paper discusses an emerging area of applying machine learning (ML) methods to augment traditional Computational Fluid Dynamics (CFD) simulations of road vehicle aerodynamics. ML methods have the potential to both reduce the computational effort to predict a new geometry or car condition and to explore a greater number of design parameters with the same computational budget. Similar to traditional CFD methods, there exists a broad range of approaches. In particular, the accuracy and computational efficiency of a CFD simulation vary greatly depending on the choice of turbulence model (DNS, LES, RANS) and the underlying spatial and temporal numerical discretizations. Similarly, the end-user must select the correct ML method depending on the use-case, the available input data, and the trade-off between accuracy and computational cost. In this paper, we showcase several case studies using various data-driven ML methods to highlight the promise of these approaches. Whilst these case studies are not comprehensive investigations of the underlying methods and do not include all possible ML approaches (i.e., physics-driven), they highlight the ability of these models to in general predict new designs in near real-time (i.e., less than 5 seconds), after typically less than 1 hour of training on a single GPU. There still exists a need for high quality training data from traditional CFD methods and high-fidelity CFD simulations to validate the ML predictions. Thus, ML approaches should be seen as tools to augment traditional CFD methods rather than to replace them. While this work focuses on preliminary studies, future work will look at more comprehensive real-world/industrial-size calculations for the more promising technologies identified here.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mly完成签到 ,获得积分10
3秒前
富贵儿完成签到 ,获得积分10
4秒前
506407完成签到,获得积分10
5秒前
万默完成签到 ,获得积分10
6秒前
自来也完成签到,获得积分10
7秒前
叁壹粑粑完成签到,获得积分10
7秒前
eternal_dreams完成签到 ,获得积分10
8秒前
平淡的火龙果完成签到,获得积分10
10秒前
10秒前
11秒前
yyyyxxxg完成签到,获得积分10
12秒前
科研通AI2S应助学术laji采纳,获得10
14秒前
韶华若锦完成签到 ,获得积分10
14秒前
雷乾完成签到,获得积分10
15秒前
落落完成签到 ,获得积分0
16秒前
Gu发布了新的文献求助10
17秒前
吸尘器完成签到 ,获得积分10
17秒前
慕言完成签到 ,获得积分10
20秒前
耍酷的冷雪完成签到,获得积分10
20秒前
做不了一点科研完成签到 ,获得积分10
21秒前
wgl200212完成签到,获得积分10
22秒前
温暖霸完成签到,获得积分10
22秒前
四糸乃完成签到,获得积分10
22秒前
St雪完成签到,获得积分10
22秒前
菜头完成签到,获得积分10
25秒前
万里完成签到,获得积分10
26秒前
15940203654完成签到 ,获得积分10
26秒前
orange应助医无止境采纳,获得10
27秒前
xixi很困完成签到 ,获得积分10
27秒前
犹豫的若男完成签到,获得积分10
29秒前
鸡蛋完成签到 ,获得积分10
29秒前
hsiuf完成签到,获得积分10
31秒前
Gu完成签到,获得积分10
31秒前
闻巷雨完成签到 ,获得积分10
32秒前
一八四完成签到,获得积分10
34秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
34秒前
顾矜应助DR.zhang采纳,获得10
35秒前
疯子不风完成签到,获得积分10
35秒前
mm完成签到 ,获得积分10
36秒前
KingHok完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188343
求助须知:如何正确求助?哪些是违规求助? 4372620
关于积分的说明 13613734
捐赠科研通 4225939
什么是DOI,文献DOI怎么找? 2318042
邀请新用户注册赠送积分活动 1316607
关于科研通互助平台的介绍 1266283