Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence

肺癌 放射治疗 鉴定(生物学) 无线电技术 分割 放射科 医学 人工智能 计算机科学 医学物理学 模式识别(心理学) 肿瘤科 生物 植物
作者
Thomas Louis,François Lucia,François Cousin,Carole Mievis,Nicolas Jansen,Bernard Duysinx,Romain Le Pennec,Dimitris Visvikis,Malik Nebbache,Matilda Rehn,Mohamed Hamya,M. Geier,Pierre-Yves Salaün,Ulrike Schick,Mathieu Hatt,Philippe Coucke,Pierre Lovinfosse,Roland Hustinx
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58551-4
摘要

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助多喝水采纳,获得20
刚刚
刚刚
Loong完成签到,获得积分10
刚刚
刚刚
RATHER发布了新的文献求助10
2秒前
细腻小蜜蜂完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
bkagyin应助油炸小麻花采纳,获得10
4秒前
4秒前
4秒前
好运来完成签到 ,获得积分10
4秒前
karisoo完成签到,获得积分10
4秒前
ZZZ发布了新的文献求助10
4秒前
5秒前
爆米花应助kk采纳,获得10
6秒前
6秒前
6秒前
开朗的山彤应助mjicm采纳,获得50
6秒前
南风完成签到,获得积分10
6秒前
情怀应助热情的书南采纳,获得10
7秒前
7秒前
7秒前
8秒前
科研通AI5应助宋宋采纳,获得30
9秒前
不安夜天发布了新的文献求助10
9秒前
望阳天完成签到,获得积分20
10秒前
10秒前
小马哥发布了新的文献求助10
10秒前
清风醉完成签到,获得积分10
10秒前
10秒前
CodeCraft应助savesunshine1022采纳,获得10
11秒前
今后应助惊天大幂幂采纳,获得10
11秒前
天天快乐应助ZZZ采纳,获得10
12秒前
赵云发布了新的文献求助10
12秒前
12秒前
齐嘉懿发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478537
求助须知:如何正确求助?哪些是违规求助? 3936102
关于积分的说明 12211349
捐赠科研通 3590703
什么是DOI,文献DOI怎么找? 1974488
邀请新用户注册赠送积分活动 1011737
科研通“疑难数据库(出版商)”最低求助积分说明 905211