Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence

肺癌 放射治疗 鉴定(生物学) 无线电技术 分割 放射科 医学 人工智能 计算机科学 医学物理学 模式识别(心理学) 肿瘤科 生物 植物
作者
Thomas Louis,François Lucia,François Cousin,Carole Mievis,Nicolas Jansen,Bernard Duysinx,Romain Le Pennec,Dimitris Visvikis,Malik Nebbache,Matilda Rehn,Mohamed Hamya,M. Geier,Pierre-Yves Salaün,Ulrike Schick,Mathieu Hatt,Philippe Coucke,Pierre Lovinfosse,Roland Hustinx
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-58551-4
摘要

The primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助567采纳,获得10
刚刚
机智念芹发布了新的文献求助10
2秒前
1am33in完成签到 ,获得积分10
2秒前
2秒前
2秒前
Zx_1993应助ww007采纳,获得10
2秒前
星辰大海应助DM采纳,获得10
3秒前
CipherSage应助宋连莲采纳,获得10
3秒前
xcgh给黄金茜的求助进行了留言
3秒前
斯文败类应助紫苏采纳,获得50
3秒前
嘀嘀嘀完成签到,获得积分20
3秒前
4秒前
CodeCraft应助孙同学采纳,获得10
4秒前
嘟嘟发布了新的文献求助10
4秒前
Teddy4731完成签到,获得积分10
4秒前
5秒前
科目三应助xcx采纳,获得10
5秒前
亿妤发布了新的文献求助10
5秒前
末位牛马完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
芴三完成签到,获得积分10
6秒前
6秒前
ZeKaWa应助111采纳,获得10
6秒前
7秒前
7秒前
阿文完成签到 ,获得积分10
7秒前
7秒前
小兵完成签到,获得积分10
8秒前
LMG12完成签到,获得积分10
8秒前
xie完成签到,获得积分10
8秒前
9秒前
9秒前
芴三发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
任性的阁完成签到 ,获得积分10
11秒前
Snow完成签到,获得积分10
11秒前
sword完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541