Machine learning-based multi-objective optimization and thermal assessment of supercritical CO2 Rankine cycles for gas turbine waste heat recovery

可用能 有机朗肯循环 工艺工程 余热 热效率 朗肯循环 余热回收装置 火用 发电 环境科学 热交换器 工程类 功率(物理) 燃烧 机械工程 热力学 化学 有机化学 物理
作者
Asif Iqbal Turja,Ishtiak Ahmed Khan,Sabbir Tahmidur Rahman,Ashraf Mustakim,Mohammad Ishraq Hossain,M. Monjurul Ehsan,Yasin Khan
出处
期刊:Energy and AI [Elsevier BV]
卷期号:16: 100372-100372 被引量:4
标识
DOI:10.1016/j.egyai.2024.100372
摘要

Technologies for utilizing waste heat for power generation have attracted significant attention in recent years due to their potential to enhance energy efficiency and reduce greenhouse gas emissions. This research focuses on the comparative and optimization analysis of three supercritical carbon dioxide (sCO2) Rankine cycles (simple, cascade, and split) for gas turbine waste heat recuperation. The study begins with parametric analysis, investigating the significant effects of key variables, including turbine inlet temperature, condenser inlet temperature, and pinch point temperature, on the thermal performance of advanced sCO2 power cycles. To identify the most efficient cycle configuration, a multi-objective optimization approach is employed. This approach combines a Genetic Algorithm with machine learning regression models (Random Forest, XGBoost, Artificial Neural Network, Ridge Regression, and K-Nearest Neighbors) to predict cycle performance using a dataset extracted from cycle simulations. The decision-making process for determining the optimal cycle configuration is facilitated by the TOPSIS (technique for order of preference by similarity to the ideal solution) method. The study's major findings reveal that the split cycle outperforms the simple and cascade configurations in terms of power generation across various operating conditions. The optimized split cycle not only demonstrates superior power output but also exhibits enhanced net power output, heat recovery, system and exergy efficiency of 7.99 MW, 76.17%, 26.86% and 57.96%, respectively, making it a promising choice for waste heat recovery applications. This research has the potential to contribute to the advancement and widespread adoption of waste heat recovery in energy technologies boosting system efficiency and economic feasibility. It provides a new perspective for future research, contributing to the improvement of energy generation infrastructure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李某发布了新的文献求助10
2秒前
jenny_shjn完成签到,获得积分10
2秒前
zhao发布了新的文献求助10
2秒前
一二三完成签到,获得积分10
2秒前
隐形曼青应助哈哈哈哈嗝采纳,获得30
3秒前
cmq完成签到 ,获得积分10
4秒前
5秒前
5秒前
江脸脸发布了新的文献求助10
6秒前
7秒前
laozhang完成签到,获得积分10
7秒前
欢欢夏天完成签到,获得积分10
7秒前
DF完成签到,获得积分10
7秒前
hua完成签到 ,获得积分10
8秒前
李健应助丁酮采纳,获得30
8秒前
8秒前
xjcy给xjcy的求助进行了留言
8秒前
qq应助是我呀小夏采纳,获得10
9秒前
10秒前
10秒前
小羊咩咩发布了新的文献求助10
11秒前
YCQ发布了新的文献求助10
11秒前
科研通AI5应助小肚肚采纳,获得10
11秒前
科研通AI5应助RJM采纳,获得10
11秒前
DAJI完成签到,获得积分10
11秒前
laozhang发布了新的文献求助10
13秒前
及尔发布了新的文献求助10
13秒前
充电宝应助祝爽采纳,获得10
15秒前
受伤幻桃发布了新的文献求助10
16秒前
16秒前
17秒前
aaa发布了新的文献求助50
17秒前
18秒前
NexusExplorer应助QYue采纳,获得10
18秒前
19秒前
远方完成签到,获得积分10
19秒前
穗穗平安发布了新的文献求助10
20秒前
20秒前
江脸脸完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794906
求助须知:如何正确求助?哪些是违规求助? 3339826
关于积分的说明 10297478
捐赠科研通 3056446
什么是DOI,文献DOI怎么找? 1676997
邀请新用户注册赠送积分活动 805070
科研通“疑难数据库(出版商)”最低求助积分说明 762322