亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computation-accelerated discovery of the K2NiF4-type oxyhydrides combing density functional theory and machine learning approach

梳理 密度泛函理论 计算 计算机科学 化学 人工智能 纳米技术 材料科学 计算化学 算法 复合材料
作者
Qiang Bai,Yunrui Duan,Jie Lian,Xiaomin Wang
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:10: 964953-964953
标识
DOI:10.3389/fchem.2022.964953
摘要

The emerging K 2 NiF 4 -type oxyhydrides with unique hydride ions (H − ) and O 2- coexisting in the anion sublattice offer superior functionalities for numerous applications. However, the exploration and innovations of the oxyhydrides are challenged by their rarity as a limited number of compounds reported in experiments, owing to the stringent laboratory conditions. Herein, we employed a suite of computations involving ab initio methods, informatics and machine learning to investigate the stability relationship of the K 2 NiF 4 -type oxyhydrides. The comprehensive stability map of the oxyhydrides chemical space was constructed to identify 76 new compounds with good thermodynamic stabilities using the high-throughput computations. Based on the established database, we reveal geometric constraints and electronegativities of cationic elements as significant factors governing the oxyhydrides stabilities via informatics tools. Besides fixed stoichiometry compounds, mixed-cation oxyhydrides can provide promising properties due to the enhancement of compositional tunability. However, the exploration of the mixed compounds is hindered by their huge quantity and the rarity of stable oxyhydrides. Therefore, we propose a two-step machine learning workflow consisting of a simple transfer learning to discover 114 formable oxyhydrides from thousands of unknown mixed compositions. The predicted high H − conductivities of the representative oxyhydrides indicate their suitability as energy conversion materials. Our study provides an insight into the oxyhydrides chemistry which is applicable to other mixed-anion systems, and demonstrates an efficient computational paradigm for other materials design applications, which are challenged by the unavailable and highly unbalanced materials database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Li发布了新的文献求助10
40秒前
要减肥天问完成签到,获得积分10
43秒前
49秒前
52秒前
坂田银时发布了新的文献求助10
54秒前
所所应助Bosen采纳,获得10
55秒前
朴实的鞋子完成签到 ,获得积分20
55秒前
1分钟前
1分钟前
杰帅发布了新的文献求助10
1分钟前
Bosen发布了新的文献求助10
1分钟前
搜集达人应助杰帅采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
1分钟前
1分钟前
tyr001发布了新的文献求助10
2分钟前
大个应助tyr001采纳,获得10
2分钟前
StonesKing完成签到,获得积分20
2分钟前
2分钟前
StonesKing发布了新的文献求助10
2分钟前
朴实的鞋子关注了科研通微信公众号
2分钟前
搜集达人应助Bosen采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
Bosen发布了新的文献求助10
3分钟前
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Lifel完成签到 ,获得积分10
3分钟前
李健的小迷弟应助DoctorTa采纳,获得10
3分钟前
木子发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634910
捐赠科研通 4576098
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572