Make the CPUs do the hard work - Automated acoustic feature extraction and visualization for marine ecoacoustics applications illustrated using marine mammal Passive Acoustic Monitoring datasets

生物声学 海洋哺乳动物 计算机科学 可视化 水下 随机森林 追踪 特征提取 降维 模式识别(心理学) 人工智能 地质学 生态学 海洋学 生物 电信 操作系统
作者
Simone Cominelli,Nicolò Bellin,Carissa D. Brown,Valeria Rossi,Jack Lawson
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.166141808.83751593/v1
摘要

1. Passive Acoustic Monitoring is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches and indices are best suited for characterizing marine acoustic environments. 2. We present an alternative to the use of ecoacoustic indices and describe the application of multiple machine learning techniques to the analysis of a large PAM dataset. We combine pre-trained acoustic classification models, dimensionality reduction, and random forest algorithms to demonstrate how machine-learned acoustic features capture different aspects of the marine environment. We processed two PAM databases and conducted 13 trials showing how acoustic features can be used to: i) discriminate between the vocalizations of marine mammals, beginning with high-level taxonomic groups, and extending to detecting differences between conspecifics belonging to distinct populations; ii) discriminating amongst different marine environments; and iii) detecting and monitoring anthropogenic and biological sound sources. 3. Acoustic features and their UMAP projections exhibited good performance in the classification of marine mammal vocalizations. Most of the taxonomic levels investigated here could be classified using the UMAP projections, apart from species that were underrepresented. Both anthropogenic (ships and airguns) and biological (humpback whales) sound sources could also be identified in field recordings. 4. We argue that acoustic feature extraction, visualization, and analysis allows the retention of most of the environmental information contained in PAM recordings, overcoming the limitations encountered when using ecoacoustics indices. Acoustic features are universal, permitting comparisons of results collected from multiple environments. Our approach can be used to simultaneously investigate the macro and micro characteristics of marine soundscapes, with a more objective method and with far less human effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mencanta完成签到,获得积分10
1秒前
1秒前
1秒前
Ava应助开放的高山采纳,获得10
1秒前
充电宝应助亚尔采纳,获得10
1秒前
feng完成签到,获得积分10
2秒前
Japrin完成签到,获得积分10
2秒前
3秒前
聪聪great完成签到,获得积分10
3秒前
SYLH应助顺利的傲云采纳,获得10
3秒前
zz完成签到,获得积分10
3秒前
cc发布了新的文献求助10
3秒前
打打应助ccc采纳,获得10
3秒前
在水一方应助jeas777采纳,获得10
3秒前
bifo完成签到,获得积分10
3秒前
小桑桑发布了新的文献求助30
4秒前
CodeCraft应助哈哈哈哈哈采纳,获得10
5秒前
xx完成签到,获得积分10
5秒前
feng发布了新的文献求助10
5秒前
pfshan完成签到,获得积分10
5秒前
可靠从云发布了新的文献求助10
6秒前
今后应助小样采纳,获得10
6秒前
SSL完成签到,获得积分10
7秒前
彩色蘑菇完成签到,获得积分10
7秒前
ncwgx发布了新的文献求助10
7秒前
科研通AI5应助zheng采纳,获得10
8秒前
SYLH应助哦豁采纳,获得10
8秒前
解安珊完成签到,获得积分10
8秒前
俏皮诺言发布了新的文献求助10
9秒前
9秒前
小马甲应助zyt采纳,获得10
9秒前
10秒前
10秒前
平心定气完成签到 ,获得积分10
10秒前
汉堡包应助zychaos采纳,获得30
10秒前
1793275356完成签到,获得积分20
11秒前
12秒前
12秒前
PHW完成签到,获得积分10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798