计算机科学
入侵检测系统
试验台
异常检测
计算机安全
网络攻击
僵尸网络
鉴定(生物学)
恶意软件
基于异常的入侵检测系统
仿形(计算机编程)
人工智能
机器学习
计算机网络
互联网
操作系统
生物
植物
作者
Joseph Rose,Matthew Swann,Konstantinos-Panagiotis Grammatikakis,Ioannis Koufos,Gueltoum Bendiab,Stavros Shiaeles,Nicholas Kolokotronis
标识
DOI:10.1016/j.sysarc.2022.102722
摘要
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. This paper explores the potential of using network profiling, machine learning, and game theory, to secure IoT against cyber-attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for identification of potential attacks. To complement this solution, an intrusion response system is used to act upon the generated alerts and compute the mitigation actions at real-time. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms, resulting in the mitigation of the majority of the executed attacks.
科研通智能强力驱动
Strongly Powered by AbleSci AI