亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incremental Learning for Remaining Useful Life Prediction via Temporal Cascade Broad Learning System With Newly Acquired Data

计算机科学 人工智能 再培训 深度学习 机器学习 特征(语言学) 级联 人工神经网络 特征提取 数据建模 数据挖掘 模式识别(心理学) 工程类 化学工程 数据库 哲学 业务 语言学 国际贸易
作者
Yudong Cao,Minping Jia,Peng Ding,Xiaoli Zhao,Yifei Ding
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 6234-6245 被引量:34
标识
DOI:10.1109/tii.2022.3201977
摘要

Deep neural networks have promoted the technology development of fault classification and remaining useful life (RUL) prediction for mechanical equipment due to their powerful nonlinear feature extraction capability. However, the performance of traditional deep learning models is limited by the depth of networks, which is directly related to the training consumption. In addition, the parameters of networks can only be updated by retraining when faced with newly acquired data. To address the above problems, an incremental learning method based on a temporal cascade broad learning system (TCBLS) is proposed for the RUL prediction of machinery with newly acquired data. Specifically, linear and nonlinear feature information is first learned by the TCBLS. The ridge regression method is developed to calculate the weights of the network and establish an end-to-end mapping between the feature information layer and the prediction layer. Finally, the incremental learning of new data and the incremental learning of nodes are proposed for adaptively updating the weights of the network in the face of newly acquired data and insufficient prediction accuracy. The effectiveness of the proposed method is verified by four run-to-failure datasets. The comparison results with classical deep learning models show that the proposed method is promising for RUL prediction as it achieves high prediction accuracy while saving training time consumption across orders of magnitude and effectively handling newly acquired data without retraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助胡萝卜叶子采纳,获得10
9秒前
11秒前
胡萝卜叶子完成签到,获得积分10
17秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
冬去春来完成签到 ,获得积分10
2分钟前
田様应助淡水美人鱼采纳,获得10
2分钟前
jqliu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
布鲁塞尔土豆完成签到,获得积分10
2分钟前
3分钟前
jqliu完成签到,获得积分10
3分钟前
3分钟前
淡水美人鱼完成签到,获得积分10
3分钟前
酷波er应助穿林打夜采纳,获得10
4分钟前
Akim应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
丁元英完成签到,获得积分10
6分钟前
6分钟前
甜甜的紫菜完成签到 ,获得积分10
6分钟前
彭于晏应助科研通管家采纳,获得10
7分钟前
嘻嘻完成签到,获得积分10
7分钟前
8分钟前
颜千琴发布了新的文献求助10
8分钟前
8分钟前
Owen应助颜千琴采纳,获得10
8分钟前
颜千琴完成签到,获得积分10
8分钟前
聪慧的从雪完成签到 ,获得积分10
8分钟前
微卫星不稳定完成签到 ,获得积分10
9分钟前
科研通AI5应助强健的问兰采纳,获得10
9分钟前
9分钟前
9分钟前
简简简发布了新的文献求助10
9分钟前
生动之云发布了新的文献求助10
9分钟前
善学以致用应助生动之云采纳,获得10
9分钟前
科研通AI2S应助kei采纳,获得10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4457749
求助须知:如何正确求助?哪些是违规求助? 3922542
关于积分的说明 12171474
捐赠科研通 3573833
什么是DOI,文献DOI怎么找? 1963209
邀请新用户注册赠送积分活动 1002325
科研通“疑难数据库(出版商)”最低求助积分说明 897041