Dealing with Uncertainty: Understanding the Impact of Prognostic Versus Diagnostic Tasks on Trust and Reliance in Human-AI Decision Making

任务(项目管理) 计算机科学 背景(考古学) 实证研究 人工智能 领域(数学分析) 任务分析 机器学习 知识管理 工程类 古生物学 数学分析 哲学 数学 认识论 生物 系统工程
作者
Sara Salimzadeh,Gaole He,Ujwal Gadiraju
标识
DOI:10.1145/3613904.3641905
摘要

While existing literature has explored and revealed several insights pertaining to the role of human factors (e.g., prior experience, domain knowledge) and attributes of AI systems (e.g., accuracy, trustworthiness), there is a limited understanding around how the important task characteristics of complexity and uncertainty shape human decision-making and human-AI team performance. In this work, we aim to address this research and empirical gap by systematically exploring how task complexity and uncertainty influence human-AI decision-making. Task complexity refers to the load of information associated with a task, while task uncertainty refers to the level of unpredictability associated with the outcome of a task. We conducted a between-subjects user study (N = 258) in the context of a trip-planning task to investigate the impact of task complexity and uncertainty on human trust and reliance on AI systems. Our results revealed that task complexity and uncertainty have a significant impact on user reliance on AI systems. When presented with complex and uncertain tasks, users tended to rely more on AI systems while demonstrating lower levels of appropriate reliance compared to tasks that were less complex and uncertain. In contrast, we found that user trust in the AI systems was not influenced by task complexity and uncertainty. Our findings can help inform the future design of empirical studies exploring human-AI decision-making. Insights from this work can inform the design of AI systems and interventions that are better aligned with the challenges posed by complex and uncertain tasks. Finally, the lens of diagnostic versus prognostic tasks can inspire the operationalization of uncertainty in human-AI decision-making studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
百里青寒完成签到,获得积分10
1秒前
4秒前
6秒前
113113完成签到,获得积分10
6秒前
Hello应助cc采纳,获得10
6秒前
Jasper应助削皮柚子采纳,获得10
7秒前
研友_VZG7GZ应助congdexxx采纳,获得10
8秒前
胡图图发布了新的文献求助10
9秒前
李锦燕完成签到,获得积分10
10秒前
cjynl发布了新的文献求助30
12秒前
Jasper应助czq采纳,获得10
15秒前
17秒前
18秒前
胡图图完成签到,获得积分10
18秒前
20秒前
搜集达人应助郁金香采纳,获得10
20秒前
刘天宇完成签到 ,获得积分10
22秒前
Clarence发布了新的文献求助10
23秒前
老西瓜完成签到,获得积分10
23秒前
23秒前
炙热安双完成签到,获得积分20
24秒前
Jeamren完成签到,获得积分10
26秒前
cc发布了新的文献求助10
27秒前
miles发布了新的文献求助10
27秒前
天天快乐应助Caramel采纳,获得10
28秒前
背完单词好睡觉完成签到 ,获得积分10
30秒前
luca发布了新的文献求助30
31秒前
斯文麦片完成签到 ,获得积分10
31秒前
32秒前
英姑应助李键刚采纳,获得10
34秒前
star完成签到,获得积分10
40秒前
科研通AI5应助随意采纳,获得10
40秒前
iabai完成签到,获得积分10
41秒前
王大橘完成签到 ,获得积分10
42秒前
cjynl完成签到,获得积分10
42秒前
冯微微完成签到,获得积分10
43秒前
44秒前
挽风风风风完成签到,获得积分10
44秒前
Singularity应助萨卡斯采纳,获得10
45秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442