RPI-GGCN: Prediction of RNA–Protein Interaction Based on Interpretability Gated Graph Convolution Neural Network and Co-Regularized Variational Autoencoders

计算机科学 卷积(计算机科学) 可解释性 人工智能 图形 模式识别(心理学) 数学 人工神经网络 理论计算机科学
作者
Yifei Wang,Pengju Ding,Congjing Wang,Shiyue He,Xin Gao,Bin Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3390935
摘要

RNA-protein interactions (RPIs) play an important role in several fundamental cellular physiological processes, including cell motility, chromosome replication, transcription and translation, and signaling. Predicting RPI can guide the exploration of cellular biological functions, intervening in diseases, and designing drugs. Given this, this study proposes the RPI-gated graph convolutional network (RPI-GGCN) method for predicting RPI based on the gated graph convolutional neural network (GGCN) and co-regularized variational autoencoder (Co-VAE). First, different types of feature information were extracted from RNA and protein sequences by nine feature extraction methods. Second, Co-VAEs are used to eliminate the redundancy of fused features and generate optimal features. Finally, this study introduces gated cyclic units into graph convolutional networks (GCNs) to construct a model for RPI prediction, which efficiently extracts topological information and improves the model's interpretable feature learning and expression capabilities. In the fivefold cross-validation test, the RPI-GGCN method achieved prediction accuracies of 97.27%, 97.32%, 96.54%, 95.76%, and 94.98% on the RPI369, RPI488, RPI1446, RPI1807, and RPI2241 datasets. To test the generalization performance of the model, we used the model trained on RPI369 to predict the independent NPInter v3.0 dataset and achieved excellent performance in all six independent validation sets. By visualizing the RPI network graph based on the prediction results, we aim to provide a new perspective and reference for studying RPI mechanisms and exploring new RPIs. Extensive experimental results demonstrate that RPI-GGCN can provide an efficient, accurate, and stable RPI prediction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
小张同学完成签到,获得积分10
1秒前
bc应助yyou采纳,获得10
2秒前
CC发布了新的文献求助10
2秒前
谢富杰发布了新的文献求助10
6秒前
阳光的成风完成签到,获得积分10
6秒前
8秒前
橙汁得配曼妥思完成签到 ,获得积分10
10秒前
11秒前
晶晶发布了新的文献求助10
11秒前
lijunlhc完成签到,获得积分10
13秒前
shi发布了新的文献求助10
14秒前
huhao完成签到,获得积分20
15秒前
20秒前
华仔应助huhao采纳,获得20
20秒前
23秒前
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得30
28秒前
段段砖应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
30秒前
慕青应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
30秒前
Johnlian完成签到 ,获得积分10
32秒前
流氓恐龙完成签到,获得积分10
35秒前
huhao发布了新的文献求助20
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275