亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating deep learning, satellite image processing, and spatial-temporal analysis for urban flood prediction

大洪水 不透水面 数字高程模型 基本事实 遥感 卫星图像 漫滩 环境科学 地质学 计算机科学 地图学 地理 人工智能 考古 生态学 生物
作者
Nasim Mohamadiazar,Ali Ebrahimian,Hossein Hosseiny
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:639: 131508-131508 被引量:18
标识
DOI:10.1016/j.jhydrol.2024.131508
摘要

Urban flooding is escalating worldwide due to the increasing impervious surfaces from urban developments and frequency of extreme rainfall events by climate change. Traditional flood extent prediction and mapping methods based on physical-based hydrological principles often face limitations due to model complexity and computational burden. In response to these challenges, there has been a notable shift toward satellite image processing and Artificial Intelligence (AI) based approaches, such as Deep Learning (DL) models, including architectures like Convolutional Neural Networks (CNN). The objective of this research is to predict near real-time (NRT) flood extents within urban areas. This research integrated CNN (U-Net) with Sentinel-1 satellite imagery, Digital Elevation Model (DEM), hydrologic soil group (HSG), imperviousness, and rainfall data to create a flood extent prediction model. To detect flooded areas, a binary raster map was created using calibrated backscatter values derived from the VV (vertical transmit and vertical receive) polarization mode of Sentinel-1 imagery, which was highlighted as having a significant impact on backscatter behavior and prediction results. Application of the model was demonstrated in urban areas of Miami-Dade County, Florida. The results demonstrated the capability of the model to provide rapid and accurate flood extent predictions at a spatial resolution of 10 m, with an overall accuracy of 97.05 %, F-1 Score of 92.49 %, and AUC of 93 % in the study area. The U-Net model's flood predictions were compared with historical floodplain data and then using GIS overlay analysis, resulting in a Ground Truth Index of 84.05 % that shows the accuracy of the model in identifying flooded areas. The research incorporated crucial flood-influencing data (including rainfall) to the flood extent prediction models and expanded the focus models beyond major rainfall events only to encompass a wider range of flood events. The presented NRT flood extent mapping model has a broad range of applicability, including, but not limited to, the continuous monitoring of flood events and their potential impacts on civil infrastructure assets (e.g., construction, operation, and maintenance of roads and bridges), early warning systems for timely evacuation and preparedness measures, and insurance risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zert发布了新的文献求助10
5秒前
认真的奇异果完成签到 ,获得积分10
7秒前
xinxin完成签到,获得积分10
12秒前
华仔应助evermore采纳,获得10
15秒前
20秒前
Criminology34应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
25秒前
evermore完成签到,获得积分10
27秒前
兴尽晚回舟完成签到 ,获得积分10
28秒前
evermore发布了新的文献求助10
30秒前
风与沙的边缘完成签到,获得积分10
34秒前
42秒前
45秒前
Mingyue123发布了新的文献求助10
48秒前
Mingyue123完成签到,获得积分10
1分钟前
喜悦的小土豆完成签到 ,获得积分10
1分钟前
ywy发布了新的文献求助10
1分钟前
1分钟前
Blaseaka完成签到 ,获得积分0
1分钟前
1分钟前
caca完成签到,获得积分0
2分钟前
顾矜应助xuan采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
乐乐应助Fishchips采纳,获得10
2分钟前
liuliu完成签到,获得积分20
2分钟前
脑洞疼应助Zert采纳,获得10
2分钟前
2分钟前
小山己几完成签到,获得积分10
2分钟前
眯眯眼的山柳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
1577发布了新的文献求助10
2分钟前
兴奋秋珊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346219
求助须知:如何正确求助?哪些是违规求助? 4480951
关于积分的说明 13947038
捐赠科研通 4378626
什么是DOI,文献DOI怎么找? 2405984
邀请新用户注册赠送积分活动 1398546
关于科研通互助平台的介绍 1371163