清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cross-domain contrastive graph neural network for lncRNA–protein interaction prediction

计算机科学 人工神经网络 人工智能
作者
Hui Li,Bin Wu,Miaomiao Sun,Zhenfeng Zhu,Kuisheng Chen,Ge Hong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:296: 111901-111901 被引量:6
标识
DOI:10.1016/j.knosys.2024.111901
摘要

Identifying lncRNA-protein interactions (LPIs) is an important biomedical task, facilitating the comprehension of the biological functions and mechanisms of lncRNAs. Many computational methods have been developed for this task, especially graph neural network (GNN)-based methods have attracted increasing attention. Typically, the LPI network involves two types of interaction domains: the interactive domain capturing the direct interaction information between lncRNAs and proteins, and the collaborative domain reflecting the collaboration information among lncRNAs or proteins. However, existing GNN-based methods only leverage one of them to obtain topological information, which cannot fully characterize lncRNAs and proteins, resulting in suboptimal node representations. Moreover, each domain contains task-irrelevant redundant information, posing a challenge in effectively integrating information from different domains. To address these issues, we propose a novel Cross-domain Contrastive Graph Neural Network (CCGNN) for predicting potential LPIs. CCGNN employs a multi-domain encoder that consists of an interactive domain encoder and two collaborative domain encoders to capture valuable information from each interaction domain. Subsequently, domain-adaptive fusion is designed to integrate information from different domains to acquire comprehensive node representations. Furthermore, cross-domain contrastive learning is devised to enrich the node representations, drawing inspiration from the information bottleneck principle by retaining as much task-relevant information as possible within each domain and minimizing mutual information between representations across different domains. Extensive experiments on four real-world datasets demonstrate the superiority of CCGNN over state-of-the-art methods, and a further case study and generalization analysis illustrate the effectiveness of CCGNN in the biomedical link prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzhang2完成签到 ,获得积分10
6秒前
范白容完成签到 ,获得积分0
6秒前
zhangheng发布了新的文献求助10
1分钟前
allrubbish完成签到,获得积分10
1分钟前
huanghe完成签到,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
AmyHu完成签到,获得积分10
2分钟前
qq完成签到 ,获得积分10
2分钟前
2分钟前
yanghuige发布了新的文献求助10
3分钟前
zhangsan完成签到,获得积分10
3分钟前
梓树完成签到,获得积分20
3分钟前
3分钟前
通科研完成签到 ,获得积分10
4分钟前
卜十三发布了新的文献求助10
4分钟前
科研通AI5应助yanghuige采纳,获得10
4分钟前
科科通通完成签到,获得积分10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
凤迎雪飘完成签到,获得积分10
4分钟前
4分钟前
2022H发布了新的文献求助20
4分钟前
whuhustwit完成签到,获得积分10
4分钟前
4分钟前
科研通AI5应助2022H采纳,获得10
5分钟前
5分钟前
fuyuhaoy完成签到,获得积分10
5分钟前
Sunny完成签到,获得积分10
6分钟前
自然的含蕾完成签到 ,获得积分10
6分钟前
共享精神应助俊逸吐司采纳,获得10
6分钟前
SCI的芷蝶完成签到 ,获得积分10
7分钟前
7分钟前
钉钉完成签到 ,获得积分10
8分钟前
3211应助科研通管家采纳,获得10
8分钟前
金钰贝儿完成签到,获得积分10
8分钟前
meijuan1210完成签到 ,获得积分10
9分钟前
vbnn完成签到 ,获得积分10
9分钟前
顾矜应助大雄先生采纳,获得10
10分钟前
Adam完成签到 ,获得积分10
10分钟前
10分钟前
大雄先生发布了新的文献求助10
10分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819963
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418873
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695009
邀请新用户注册赠送积分活动 814799
科研通“疑难数据库(出版商)”最低求助积分说明 768522