Empirical Guidelines for Deploying LLMs onto Resource-constrained Edge Devices

GSM演进的增强数据速率 资源(消歧) 业务 计算机科学 电信 计算机网络
作者
Ruiyang Qin,Dancheng Liu,Zheyu Yan,Zhaoxuan Tan,Zixuan Pan,Zhenge Jia,Meng Jiang,Ahmed Abbasi,Jinjun Xiong,Yiyu Shi
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.03777
摘要

The scaling laws have become the de facto guidelines for designing large language models (LLMs), but they were studied under the assumption of unlimited computing resources for both training and inference. As LLMs are increasingly used as personalized intelligent assistants, their customization (i.e., learning through fine-tuning) and deployment onto resource-constrained edge devices will become more and more prevalent. An urging but open question is how a resource-constrained computing environment would affect the design choices for a personalized LLM. We study this problem empirically in this work. In particular, we consider the tradeoffs among a number of key design factors and their intertwined impacts on learning efficiency and accuracy. The factors include the learning methods for LLM customization, the amount of personalized data used for learning customization, the types and sizes of LLMs, the compression methods of LLMs, the amount of time afforded to learn, and the difficulty levels of the target use cases. Through extensive experimentation and benchmarking, we draw a number of surprisingly insightful guidelines for deploying LLMs onto resource-constrained devices. For example, an optimal choice between parameter learning and RAG may vary depending on the difficulty of the downstream task, the longer fine-tuning time does not necessarily help the model, and a compressed LLM may be a better choice than an uncompressed LLM to learn from limited personalized data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nefertari发布了新的文献求助20
4秒前
11应助xiaobai采纳,获得20
4秒前
烟花应助白羽采纳,获得10
4秒前
酷炫依白发布了新的文献求助10
6秒前
宋治发布了新的文献求助10
6秒前
今后应助有魅力翠柏采纳,获得10
7秒前
7秒前
情怀应助帅气老虎采纳,获得10
8秒前
科研通AI5应助shasha采纳,获得30
9秒前
灵儿完成签到,获得积分10
9秒前
星辰大海应助立青采纳,获得10
10秒前
10秒前
英俊的铭应助酷炫依白采纳,获得10
10秒前
11秒前
xaogny发布了新的文献求助10
12秒前
夜安完成签到 ,获得积分10
13秒前
Nefertari完成签到,获得积分10
14秒前
Orange应助贰什柒采纳,获得10
14秒前
16秒前
16秒前
17秒前
wanci应助淡定的半梦采纳,获得10
18秒前
18秒前
科研通AI5应助宋治采纳,获得10
18秒前
金桔完成签到,获得积分10
18秒前
小蘑菇应助武雨寒采纳,获得10
19秒前
19秒前
20秒前
彳亍而行完成签到,获得积分20
21秒前
帅气老虎发布了新的文献求助10
21秒前
22秒前
BGI789完成签到,获得积分10
23秒前
科研通AI5应助欢喜火车采纳,获得10
23秒前
彳亍而行发布了新的文献求助10
24秒前
科研通AI5应助萨尔莫斯采纳,获得10
24秒前
小鱼发布了新的文献求助10
28秒前
香蕉谷芹完成签到,获得积分10
29秒前
30秒前
Owen应助哈理老萝卜采纳,获得10
31秒前
yaya完成签到 ,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627