钙钛矿(结构)
材料科学
氧气
热的
化学工程
化学
物理
有机化学
气象学
工程类
作者
Rafikul Ali Saha,Wei‐Hsun Chiu,Giedrius Degutis,Peng Chen,Matthias Filez,Eduardo Solano,Н. К. Орлов,Francesco De Angelis,Rocío Ariza,Carlo Meneghini,Christophe Detavernier,Sawanta S. Mali,Minh Tam Hoang,Yang Yang,Erik C. Garnett,Lianzhou Wang,Hongxia Wang,Maarten B. J. Roeffaers,Julian A. Steele
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-06-20
卷期号:18 (26): 16994-17006
被引量:11
标识
DOI:10.1021/acsnano.4c03222
摘要
The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI3-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI3 crystal, entering via iodine vacancies at the surface, creating superoxide (O2-) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional Cs4PbI6 capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI3 films. This functional modification is demonstrated in γ-CsPbI2Br perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.
科研通智能强力驱动
Strongly Powered by AbleSci AI