Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective

广告 机器学习 人工智能 决策树 药物发现 算法 计算机科学 药代动力学 随机森林 药理学 化学 生物 生物化学
作者
Cheng Fang,Ye Wang,Richard Grater,Sudarshan Kapadnis,Cheryl Black,Patrick Trapa,Simone Sciabola
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (11): 3263-3274 被引量:34
标识
DOI:10.1021/acs.jcim.3c00160
摘要

Absorption, distribution, metabolism, and excretion (ADME), which collectively define the concentration profile of a drug at the site of action, are of critical importance to the success of a drug candidate. Recent advances in machine learning algorithms and the availability of larger proprietary as well as public ADME data sets have generated renewed interest within the academic and pharmaceutical science communities in predicting pharmacokinetic and physicochemical endpoints in early drug discovery. In this study, we collected 120 internal prospective data sets over 20 months across six ADME in vitro endpoints: human and rat liver microsomal stability, MDR1-MDCK efflux ratio, solubility, and human and rat plasma protein binding. A variety of machine learning algorithms in combination with different molecular representations were evaluated. Our results suggest that gradient boosting decision tree and deep learning models consistently outperformed random forest over time. We also observed better performance when models were retrained on a fixed schedule, and the more frequent retraining generally resulted in increased accuracy, while hyperparameters tuning only improved the prospective predictions marginally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivyyyyyy发布了新的文献求助30
刚刚
不万能青年完成签到,获得积分20
2秒前
3秒前
余姚发布了新的文献求助10
4秒前
小仙女完成签到,获得积分10
4秒前
5秒前
和谐耳机完成签到 ,获得积分20
5秒前
6秒前
6秒前
小仙女发布了新的文献求助10
8秒前
微笑的鼠标完成签到,获得积分20
9秒前
9秒前
Jeffery426发布了新的文献求助10
10秒前
星辰大海应助震动的冬瓜采纳,获得10
10秒前
郭二发布了新的文献求助10
11秒前
12秒前
13秒前
晚风完成签到,获得积分10
14秒前
15秒前
今后应助郭二采纳,获得10
15秒前
15秒前
可爱的函函应助黎明采纳,获得10
17秒前
ivyyyyyy完成签到,获得积分10
18秒前
18秒前
炙热尔阳完成签到 ,获得积分10
19秒前
19秒前
姜夔完成签到,获得积分10
19秒前
Colin完成签到,获得积分10
20秒前
21秒前
21秒前
边贺发布了新的文献求助10
22秒前
赘婿应助乔治哇采纳,获得10
23秒前
24秒前
24秒前
24秒前
搜集达人应助lizhiqian2024采纳,获得10
25秒前
cdercder应助qwq采纳,获得20
25秒前
27秒前
汉堡包应助正直康采纳,获得10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791223
求助须知:如何正确求助?哪些是违规求助? 3335778
关于积分的说明 10277070
捐赠科研通 3052416
什么是DOI,文献DOI怎么找? 1675126
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761096