EEG emotion recognition using attention-based convolutional transformer neural network

计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 语音识别 变压器 心理学 神经科学 电压 物理 量子力学
作者
Linlin Gong,Mingyang Li,Tao Zhang,Wanzhong Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104835-104835 被引量:71
标识
DOI:10.1016/j.bspc.2023.104835
摘要

EEG-based emotion recognition has become an important task in affective computing and intelligent interaction. However, how to effectively combine the spatial, spectral, and temporal distinguishable information of EEG signals to achieve better emotion recognition performance is still a challenge. In this paper, we propose a novel attention-based convolutional transformer neural network (ACTNN), which effectively integrates the crucial spatial, spectral, and temporal information of EEG signals, and cascades convolutional neural network and transformer in a new way for emotion recognition task. We first organized EEG signals into spatial–spectral–temporal representations. To enhance the distinguishability of features, spatial and spectral attention masks are learned for the representation of each time slice. Then, a convolutional module is used to extract local spatial and spectral features. Finally, we concatenate the features of all time slices, and feed them into the transformer-based temporal encoding layer to use multi-head self-attention for global feature awareness. The average recognition accuracy of the proposed ACTNN on two public datasets, namely SEED and SEED-IV, is 98.47% and 91.90% respectively, outperforming the state-of-the-art methods. Besides, to explore the underlying reasoning process of the model and its neuroscience relevance with emotion, we further visualize spatial and spectral attention masks. The attention weight distribution shows that the activities of prefrontal lobe and lateral temporal lobe of the brain, and the gamma band of EEG signals might be more related to human emotion. The proposed ACTNN can be employed as a promising framework for EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了一李完成签到,获得积分10
刚刚
1秒前
lxc完成签到,获得积分10
1秒前
贱小贱发布了新的文献求助10
2秒前
吃人陈发布了新的文献求助10
2秒前
2秒前
CipherSage应助能干冰露采纳,获得10
3秒前
SPULY发布了新的文献求助10
4秒前
希望天下0贩的0应助chao采纳,获得10
5秒前
碎落星沉完成签到,获得积分10
5秒前
梦初醒处发布了新的文献求助10
6秒前
7秒前
8秒前
惚安完成签到,获得积分20
8秒前
8秒前
taozi完成签到,获得积分0
9秒前
科研通AI6应助WXECO采纳,获得10
9秒前
英姑应助xxxx采纳,获得10
9秒前
小二郎应助ff采纳,获得10
9秒前
liv应助黄丁文采纳,获得10
10秒前
10秒前
姜姜不姜就完成签到,获得积分10
11秒前
山牙子发布了新的文献求助10
13秒前
吃人陈完成签到,获得积分10
13秒前
核桃应助Gru采纳,获得10
14秒前
14秒前
风中的冰蓝完成签到,获得积分10
14秒前
14秒前
14秒前
猎空发布了新的文献求助10
15秒前
执着静竹完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
打打应助流云采纳,获得10
16秒前
17秒前
ner发布了新的文献求助20
17秒前
18秒前
chenwang发布了新的文献求助10
18秒前
18秒前
夕雾发布了新的文献求助10
18秒前
WTH应助灵巧的从寒采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309450
求助须知:如何正确求助?哪些是违规求助? 3831325
关于积分的说明 11987598
捐赠科研通 3471348
什么是DOI,文献DOI怎么找? 1903375
邀请新用户注册赠送积分活动 950642
科研通“疑难数据库(出版商)”最低求助积分说明 852503