Dual Transformer Based Prediction for Lane Change Intentions and Trajectories in Mixed Traffic Environment

弹道 对偶(语法数字) 计算机科学 感知 变压器 人工智能 数据挖掘 机器学习 模拟 工程类 生物 电气工程 物理 文学类 艺术 电压 神经科学 天文
作者
Kai Gao,Xunhao Li,Bin Chen,Lin Hu,Jian Liu,Ronghua Du,Yongfu Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6203-6216 被引量:118
标识
DOI:10.1109/tits.2023.3248842
摘要

In a mixed traffic environment of human and autonomous driving, it is crucial for an autonomous vehicle to predict the lane change intentions and trajectories of vehicles that pose a risk to it. However, due to the uncertainty of human intentions, accurately predicting lane change intentions and trajectories is a great challenge. Therefore, this paper aims to establish the connection between intentions and trajectories and propose a dual Transformer model for the target vehicle. The dual Transformer model contains a lane change intention prediction model and a trajectory prediction model. The lane change intention prediction model is able to extract social correlations in terms of vehicle states and outputs an intention probability vector. The trajectory prediction model fuses the intention probability vector, which enables it to obtain prior knowledge. For the intention prediction model, the accuracy can be improved by designing the multi-head attention. For the trajectory prediction model, the performance can be optimized by incorporating intention probability vectors and adding the LSTM. Verified on NGSIM and highD datasets, the experimental results show that this model has encouraging accuracy. Compared with the model without intention probability vectors, the impact of the model on NGSIM dataset and highD dataset in RMSE is improved by 57.27% and 58.70% respectively. Compared with two existed models, evaluation metrics of the intention prediction can be improved by 7.40-10.09% on NGSIM dataset and 2.17-2.69% on highD dataset within advanced prediction time 1s. This method provides the insights for designing advanced perceptual systems for autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助xu采纳,获得10
1秒前
ahxb发布了新的文献求助10
1秒前
1秒前
小赵发布了新的文献求助10
2秒前
march发布了新的文献求助10
2秒前
daydayup完成签到,获得积分10
2秒前
4秒前
5秒前
彭于晏应助qiuzhiqi采纳,获得10
5秒前
RenWeng完成签到,获得积分10
6秒前
7秒前
理理给理理的求助进行了留言
7秒前
balko发布了新的文献求助10
7秒前
8秒前
ahxb完成签到,获得积分10
8秒前
脑洞疼应助村上种树采纳,获得10
9秒前
思源应助优雅的抚琴采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
吴新发布了新的文献求助10
10秒前
33关闭了33文献求助
10秒前
量子星尘发布了新的文献求助10
11秒前
刘丰铭完成签到,获得积分10
11秒前
11秒前
天际发布了新的文献求助10
12秒前
TIGun完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
14秒前
打打应助Oooner采纳,获得10
14秒前
baixue发布了新的文献求助10
15秒前
xu发布了新的文献求助10
15秒前
神奇科研圆完成签到,获得积分10
17秒前
小马甲应助鉨汏闫采纳,获得10
17秒前
17秒前
九九完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416931
求助须知:如何正确求助?哪些是违规求助? 4532992
关于积分的说明 14137696
捐赠科研通 4449052
什么是DOI,文献DOI怎么找? 2440569
邀请新用户注册赠送积分活动 1432413
关于科研通互助平台的介绍 1409818