已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing smart contract vulnerability detection via multi-modality code and entropy embedding

源代码 嵌入 编译程序 计算机科学 编码器 变压器 编码(集合论) 计算机工程 理论计算机科学 人工智能 程序设计语言 工程类 操作系统 集合(抽象数据类型) 电压 电气工程
作者
Dawei Yuan,Xiaohui Wang,Yao Li,Tao Zhang
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:202: 111699-111699 被引量:6
标识
DOI:10.1016/j.jss.2023.111699
摘要

Smart contracts have been widely used in the blockchain world these years, and simultaneously vulnerability detection has gained more and more attention due to the staggering economic losses caused by the attacker. Existing tools that analyze vulnerabilities for smart contracts heavily rely on rules predefined by experts, which are labour-intense and require domain knowledge. Moreover, predefined rules tend to be misconceptions and increase the risk of crafty potential back-doors in the future. Recently, researchers mainly used static and dynamic execution analysis to detect the vulnerabilities of smart contracts and have achieved acceptable results. However, the dynamic method cannot cover all the program inputs and execution paths, which leads to some vulnerabilities that are hard to detect. The static analysis method commonly includes symbolic execution and theorem proving, which requires using constraints to detect vulnerability. These shortcomings show that traditional methods are challenging to apply and expand on a large scale. This paper aims to detect vulnerabilities via the Bug Injection framework and transfer learning techniques. First, we train a Transformer encoder using multi-modality code, which contains source code, intermediate representation, and assembly code. The input code consists separately of Solidity source code, intermediate representation, and assembly code. Specifically, we translate source code into the intermediate representation and decompile the byte code into assembly code by the EVM compiler. Then, we propose a novel entropy embedding technique, which combines token embedding, segment embedding, and positional embedding of the Transformer encoder in our approach. After that, we utilize the Bug Injection framework to automatically generate specific types of buggy code for fine-tuning and evaluating the performance of vulnerability detection. The experimental results show that our proposed approach improves the performance in detecting reentrancy vulnerabilities and timestamp dependence. Moreover, our approach is more flexible and scalable than static and dynamic analysis approaches in detecting smart contract vulnerabilities. Our approach improves the baseline approaches by an average of 11.89% in term of F1 score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
里理完成签到 ,获得积分10
刚刚
小李李完成签到 ,获得积分10
2秒前
缓慢采柳完成签到 ,获得积分10
3秒前
Yacon发布了新的文献求助10
4秒前
认真雨珍完成签到,获得积分20
4秒前
李爱国应助Yacon采纳,获得10
9秒前
10秒前
10秒前
完美世界应助天真的雁露采纳,获得10
12秒前
DaLu发布了新的文献求助10
15秒前
哇咔咔完成签到 ,获得积分10
18秒前
科研通AI5应助winnie采纳,获得10
21秒前
wch666发布了新的文献求助200
23秒前
Xhdjdbd发布了新的文献求助10
24秒前
笨笨念文完成签到 ,获得积分10
24秒前
爱静静应助UWUTUYU采纳,获得10
28秒前
FashionBoy应助ccmxigua采纳,获得10
28秒前
29秒前
29秒前
科目三应助九九采纳,获得10
30秒前
34秒前
落后的冬寒完成签到,获得积分10
34秒前
江洋大盗发布了新的文献求助10
35秒前
35秒前
winnie完成签到,获得积分10
36秒前
winnie发布了新的文献求助10
38秒前
40秒前
健忘捕发布了新的文献求助10
41秒前
WayneLau完成签到,获得积分10
42秒前
42秒前
闻晓晴完成签到,获得积分10
42秒前
46秒前
零蝉发布了新的文献求助10
49秒前
慕青应助sdnihbhew采纳,获得10
53秒前
orixero应助puhong zhang采纳,获得10
54秒前
666完成签到 ,获得积分10
56秒前
不低头完成签到 ,获得积分10
58秒前
天天快乐应助江洋大盗采纳,获得10
1分钟前
qwer1234完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803962
求助须知:如何正确求助?哪些是违规求助? 3348724
关于积分的说明 10339921
捐赠科研通 3064925
什么是DOI,文献DOI怎么找? 1682809
邀请新用户注册赠送积分活动 808473
科研通“疑难数据库(出版商)”最低求助积分说明 764096