Decision curve analysis confirms higher clinical utility of multi-domain versus single-domain prediction models in patients with open abdomen treatment for peritonitis

布里氏评分 接收机工作特性 预测建模 逻辑回归 机器学习 人工智能 统计 决策树 校准 人口 计算机科学 医学 数据挖掘 数学 环境卫生
作者
Markus Huber,Patrick Schober,Sven Petersen,Markus M. Luedi
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12911-023-02156-w
摘要

Prediction modelling increasingly becomes an important risk assessment tool in perioperative systems approaches, e.g. in complex patients with open abdomen treatment for peritonitis. In this population, combining predictors from multiple medical domains (i.e. demographical, physiological and surgical variables) outperforms the prediction capabilities of single-domain prediction models. However, the benefit of these prediction models for clinical decision-making remains to be investigated. We therefore examined the clinical utility of mortality prediction models in patients suffering from peritonitis with a decision curve analysis.In this secondary analysis of a large dataset, a traditional logistic regression approach, three machine learning methods and a stacked ensemble were employed to examine the predictive capability of demographic, physiological and surgical variables in predicting mortality under open abdomen treatment for peritonitis. Calibration was examined with calibration belts and predictive performance was assessed with the area both under the receiver operating characteristic curve (AUROC) and under the precision recall curve (AUPRC) and with the Brier Score. Clinical utility of the prediction models was examined by means of a decision curve analysis (DCA) within a treatment threshold range of interest of 0-30%, where threshold probabilities are traditionally defined as the minimum probability of disease at which further intervention would be warranted.Machine learning methods supported available evidence of a higher prediction performance of a multi- versus single-domain prediction models. Interestingly, their prediction performance was similar to a logistic regression model. The DCA demonstrated that the overall net benefit is largest for a multi-domain prediction model and that this benefit is larger compared to the default "treat all" strategy only for treatment threshold probabilities above about 10%. Importantly, the net benefit for low threshold probabilities is dominated by physiological predictors: surgical and demographics predictors provide only secondary decision-analytic benefit.DCA provides a valuable tool to compare single-domain and multi-domain prediction models and demonstrates overall higher decision-analytic value of the latter. Importantly, DCA provides a means to clinically differentiate the risks associated with each of these domains in more depth than with traditional performance metrics and highlighted the importance of physiological predictors for conservative intervention strategies for low treatment thresholds. Further, machine learning methods did not add significant benefit either in prediction performance or decision-analytic utility compared to logistic regression in these data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cgl155410完成签到 ,获得积分10
刚刚
wdlc发布了新的文献求助10
1秒前
2秒前
虚幻的幻然完成签到,获得积分10
2秒前
可爱的函函应助ztf采纳,获得10
4秒前
科研通AI5应助Cyndilovetodrink采纳,获得10
5秒前
小施发布了新的文献求助10
6秒前
尤瑞米完成签到,获得积分10
8秒前
12秒前
金勇发布了新的文献求助10
13秒前
WJ发布了新的文献求助10
15秒前
小刺完成签到,获得积分10
17秒前
深情安青应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
帮主哥哥应助科研通管家采纳,获得30
20秒前
20秒前
20秒前
20秒前
sasa完成签到 ,获得积分10
20秒前
传奇3应助科研通管家采纳,获得30
20秒前
魚子应助科研通管家采纳,获得20
21秒前
烟花应助科研通管家采纳,获得10
21秒前
ED应助科研通管家采纳,获得10
21秒前
21秒前
帮主哥哥应助科研通管家采纳,获得30
21秒前
英姑应助科研通管家采纳,获得10
21秒前
21秒前
一切顺利完成签到,获得积分10
21秒前
年轻的青柏发布了新的文献求助120
22秒前
23秒前
weerfi发布了新的文献求助10
23秒前
我刷的烧饼贼亮完成签到 ,获得积分10
26秒前
28秒前
theThreeMagi完成签到,获得积分10
28秒前
niche关注了科研通微信公众号
29秒前
Selonfer发布了新的文献求助30
29秒前
tjxhtj发布了新的文献求助10
30秒前
迷人世开完成签到,获得积分0
30秒前
鄂海菡完成签到,获得积分10
30秒前
zho发布了新的文献求助10
33秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825591
求助须知:如何正确求助?哪些是违规求助? 3367764
关于积分的说明 10447731
捐赠科研通 3087164
什么是DOI,文献DOI怎么找? 1698468
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973