已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical named entity recognition and relation extraction using natural language processing of medical free text: A systematic review

关系抽取 命名实体识别 计算机科学 信息抽取 人工智能 自然语言处理 生物医学文本挖掘 机器学习 情报检索 关系(数据库) 条件随机场 领域(数学) 计算语言学 任务(项目管理) 文本挖掘 数据挖掘 经济 管理 数学 纯数学
作者
David Fraile Navarro,Kiran Ijaz,Dana Rezazadegan,Hania Rahimi-Ardabili,Mark Dras,Enrico Coiera,Shlomo Berkovsky
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:177: 105122-105122 被引量:3
标识
DOI:10.1016/j.ijmedinf.2023.105122
摘要

Natural Language Processing (NLP) applications have developed over the past years in various fields including its application to clinical free text for named entity recognition and relation extraction. However, there has been rapid developments the last few years that there's currently no overview of it. Moreover, it is unclear how these models and tools have been translated into clinical practice. We aim to synthesize and review these developments.We reviewed literature from 2010 to date, searching PubMed, Scopus, the Association of Computational Linguistics (ACL), and Association of Computer Machinery (ACM) libraries for studies of NLP systems performing general-purpose (i.e., not disease- or treatment-specific) information extraction and relation extraction tasks in unstructured clinical text (e.g., discharge summaries).We included in the review 94 studies with 30 studies published in the last three years. Machine learning methods were used in 68 studies, rule-based in 5 studies, and both in 22 studies. 63 studies focused on Named Entity Recognition, 13 on Relation Extraction and 18 performed both. The most frequently extracted entities were "problem", "test" and "treatment". 72 studies used public datasets and 22 studies used proprietary datasets alone. Only 14 studies defined clearly a clinical or information task to be addressed by the system and just three studies reported its use outside the experimental setting. Only 7 studies shared a pre-trained model and only 8 an available software tool.Machine learning-based methods have dominated the NLP field on information extraction tasks. More recently, Transformer-based language models are taking the lead and showing the strongest performance. However, these developments are mostly based on a few datasets and generic annotations, with very few real-world use cases. This may raise questions about the generalizability of findings, translation into practice and highlights the need for robust clinical evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
fengyu发布了新的文献求助10
2秒前
Jane发布了新的文献求助10
3秒前
4秒前
大大怪发布了新的文献求助10
5秒前
5秒前
科研通AI6应助砼砼采纳,获得10
7秒前
Lucas应助Hamster采纳,获得10
8秒前
bkagyin应助demon采纳,获得10
8秒前
8秒前
在水一方发布了新的文献求助10
8秒前
10秒前
桃子完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
香香完成签到,获得积分10
13秒前
14秒前
kokoko完成签到,获得积分10
14秒前
诚心梦之完成签到,获得积分10
14秒前
国际戏骨完成签到 ,获得积分10
16秒前
晏晏完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助杨乐多采纳,获得10
17秒前
科研通AI6应助ferayn采纳,获得10
18秒前
无私的梦凡完成签到,获得积分10
18秒前
蔚蓝发布了新的文献求助10
19秒前
小二发布了新的文献求助10
19秒前
李静完成签到 ,获得积分10
19秒前
萱萱完成签到,获得积分10
19秒前
诸天真完成签到,获得积分10
23秒前
小二完成签到,获得积分10
24秒前
肚皮完成签到 ,获得积分0
26秒前
fengyu关注了科研通微信公众号
30秒前
浮游应助vippp采纳,获得10
30秒前
Son4904发布了新的文献求助100
33秒前
34秒前
糊涂的觅海完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312261
求助须知:如何正确求助?哪些是违规求助? 4456030
关于积分的说明 13865116
捐赠科研通 4344428
什么是DOI,文献DOI怎么找? 2385847
邀请新用户注册赠送积分活动 1380221
关于科研通互助平台的介绍 1348578