亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the Power of Neural Basis Expansion Analysis for Time-Series Forecasting Neural Network for Deep Coalbed Methane Production Prediction

煤层气 人工神经网络 时间序列 系列(地层学) 石油工程 基础(线性代数) 计算机科学 环境科学 地质学 人工智能 工程类 机器学习 数学 煤矿开采 废物管理 古生物学 几何学
作者
Shiming Wei,Chenyu Cao,Di Wang,Shuai Zheng,Kaixuan Qiu,Yan Jin
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:30 (10): 6236-6248 被引量:1
标识
DOI:10.2118/230281-pa
摘要

Summary China’s coalbed methane (CBM) is widely distributed and very rich in resources, and the current proven reserves of deep CBM with a burial depth of more than 1500 m are abundant. As a clean unconventional resource, the accurate production prediction of deep CBM is of great significance to economic exploitation, environmental protection, and energy security. Compared with traditional decline curve analysis methods and numerical simulation algorithms, deep learning algorithms have significant advantages in feature extraction and production prediction of long time-series data. Thus, in this paper, we selected 16 deep CBM wells with a total of 2,136 production data in the main gas-producing areas of the Ordos Basin to explore and validate the prediction capability of neural basis expansion analysis for time series (N-BEATS) neural networks for deep CBM. The prediction accuracy of the N-BEATS neural network is high for both high- and low-producing CBM wells. Meanwhile, the blind test results on the test data set are stable after training using a mixture of high- and low-producing training data sets. Additionally, the newly introduced N-BEATS algorithm shows clear advantages in prediction accuracy, achieving the lowest mean absolute error (MAE) (0.0034) and root mean square error (RMSE) (0.0052) on CBM 12, significantly outperforming traditional methods such as autoregressive integrated moving average (ARIMA) (MAE: 0.0839, RMSE: 0.0846) and machine learning models like support vector machine (SVM) (MAE: 0.0733, RMSE: 0.0739), thereby demonstrating its superior capability in deep CBM production forecasting. More importantly, the accurate and stable prediction results achieved by the N-BEATS neural network can provide strong technical support for optimizing production strategies, reducing exploration risks, and improving the overall efficiency of deep CBM development, thereby promoting the intelligent and sustainable growth of the deep CBM industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
turtle完成签到 ,获得积分10
5秒前
彭于晏应助ling采纳,获得10
7秒前
sweet完成签到 ,获得积分10
10秒前
14秒前
犹豫幻丝完成签到,获得积分10
17秒前
19秒前
JIA发布了新的文献求助10
20秒前
Eason_C完成签到 ,获得积分10
24秒前
李姝仪完成签到 ,获得积分10
29秒前
不抛弃不放弃完成签到,获得积分20
33秒前
zhongxia完成签到 ,获得积分10
35秒前
41秒前
Isaac完成签到 ,获得积分10
42秒前
44秒前
ling发布了新的文献求助10
45秒前
orixero应助JIA采纳,获得10
46秒前
46秒前
Wang发布了新的文献求助10
50秒前
52秒前
星辰大海应助明月清风采纳,获得30
55秒前
sxy完成签到 ,获得积分10
56秒前
孙玉杰发布了新的文献求助50
59秒前
59秒前
1分钟前
1分钟前
许三问完成签到 ,获得积分0
1分钟前
尹恩惠完成签到,获得积分10
1分钟前
大方易巧发布了新的文献求助10
1分钟前
1分钟前
尹恩惠发布了新的文献求助10
1分钟前
今日应助唐泽雪穗采纳,获得60
1分钟前
今日应助唐泽雪穗采纳,获得90
1分钟前
今日应助唐泽雪穗采纳,获得100
1分钟前
孙玉杰完成签到,获得积分10
1分钟前
1分钟前
英姑应助mellow采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
跳跃毒娘完成签到,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847