Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques

计算机科学 人工智能 脑电图 卷积神经网络 模式识别(心理学) 精神分裂症(面向对象编程) 机器学习 频道(广播) 鉴定(生物学) 特征提取 特征(语言学) 语音识别 心理学 神经科学 植物 生物 哲学 语言学 程序设计语言 计算机网络
作者
Fatima Hassan,Syed Fawad Hussain,Saeed Mian Qaisar
出处
期刊:Information Fusion [Elsevier BV]
卷期号:92: 466-478 被引量:55
标识
DOI:10.1016/j.inffus.2022.12.019
摘要

Schizophrenia is a severe mental disorder that has adverse effects on the behavior of an individual such as disorganized speech and delusions. Electroencephalography (EEG) signals are widely used for its identification as they are non-invasive and have high temporal resolution. EEG signals may be captured using wearable devices but transmission of complete data from all channels is both battery and data consuming. Several studies on Schizophrenia have either used all channels or relied on sophisticated feature extraction algorithms to find the most relevant EEG channels for further processing. That too, however, needs data from all channels beforehand to identify the most relevant features. In this study, a publicly available multi-channel EEG signals dataset from the institute of Psychiatry and Neurology in Warsaw, Poland is studied for an automated identification of Schizophrenia using only a subset of data from selected channels. To achieve this, we device a channel selection mechanism based on a rigorous performance analysis of the Convolutional Neural Network (CNN) while considering the individual EEG channels at different brain regions. The selected channels are combined, and we use a fusion of CNN and different machine learning (ML) classifiers to train the classification model. Our experiments show that a combination of three channels namely, T4, T3, and Cz achieves 90% and 98% accuracies on subject-based and non-subject based testing, respectively, using a hybridization of CNN and logistic regression (LR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhusy发布了新的文献求助30
刚刚
深情安青应助复杂的夜蓉采纳,获得10
1秒前
yuyu完成签到,获得积分10
1秒前
1秒前
一一发布了新的文献求助10
2秒前
2秒前
脑洞疼应助绿柳刀采纳,获得10
3秒前
不安乐菱发布了新的文献求助10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
aprilvanilla应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得200
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得30
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
子车茗应助科研通管家采纳,获得20
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
酷波er应助夜行采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得50
5秒前
814791097完成签到,获得积分10
5秒前
LTTY完成签到,获得积分10
5秒前
6秒前
6秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799716
求助须知:如何正确求助?哪些是违规求助? 3345044
关于积分的说明 10323077
捐赠科研通 3061547
什么是DOI,文献DOI怎么找? 1680394
邀请新用户注册赠送积分活动 807069
科研通“疑难数据库(出版商)”最低求助积分说明 763462