Wavelet Neural Operator for solving parametric partial differential equations in computational mechanics problems

偏微分方程 小波 数学 应用数学 计算力学 操作员(生物学) 数学分析 计算机科学 有限元法 人工智能 结构工程 工程类 化学 抑制因子 基因 转录因子 生物化学
作者
Tapas Tripura,Souvik Chakraborty
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:404: 115783-115783 被引量:54
标识
DOI:10.1016/j.cma.2022.115783
摘要

With massive advancements in sensor technologies and Internet-of-things (IoT), we now have access to terabytes of historical data; however, there is a lack of clarity on how to best exploit the data to predict future events. One possible alternative in this context is to utilize an operator learning algorithm that directly learns the nonlinear mapping between two functional spaces; this facilitates real-time prediction of naturally arising complex evolutionary dynamics. In this work, we introduce a novel operator learning algorithm referred to as the Wavelet Neural Operator (WNO) that blends integral kernel with wavelet transformation. WNO harnesses the superiority of the wavelets in time–frequency localization of the functions and enables accurate tracking of patterns in the spatial domain and effective learning of the functional mappings. Since the wavelets are localized in both time/space and frequency, WNO can provide high spatial and frequency resolution. This offers learning of the finer details of the parametric dependencies in the solution for complex problems. The efficacy and robustness of the proposed WNO are illustrated on a wide array of problems involving Burger’s equation, Darcy flow, Navier–Stokes equation, Allen–Cahn equation, and Wave advection equation. A comparative study with respect to existing operator learning frameworks is presented. Finally, the proposed approach is used to build a digital twin capable of predicting Earth’s air temperature based on available historical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ding应助vgdog采纳,获得10
刚刚
孤独元龙完成签到,获得积分10
刚刚
1秒前
搞学术的傻子应助Sora采纳,获得10
1秒前
过时的松鼠完成签到,获得积分10
1秒前
1秒前
2秒前
超级发夹发布了新的文献求助10
2秒前
熊二完成签到,获得积分10
2秒前
快乐易真关注了科研通微信公众号
2秒前
Ava应助言宴采纳,获得10
2秒前
sheep完成签到,获得积分10
3秒前
arizaki7应助Jiang采纳,获得10
3秒前
3秒前
Gauss应助Ali采纳,获得30
4秒前
4秒前
4秒前
浮游应助小薛采纳,获得20
4秒前
灵巧墨镜发布了新的文献求助10
5秒前
excellent_shit完成签到,获得积分10
5秒前
漫鱼完成签到,获得积分10
5秒前
袁科研完成签到,获得积分10
6秒前
科研通AI6应助123采纳,获得10
6秒前
7秒前
7秒前
重要青柏完成签到,获得积分10
7秒前
8秒前
gaozengxiang完成签到,获得积分10
8秒前
万能图书馆应助12334采纳,获得10
9秒前
明理的喵发布了新的文献求助10
10秒前
橙子发布了新的文献求助10
11秒前
11秒前
Lyuoah完成签到,获得积分10
12秒前
小马甲应助勤恳的纸鹤采纳,获得10
12秒前
wang完成签到,获得积分10
12秒前
zhangpeipei完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
1vvZ发布了新的文献求助10
15秒前
yuu应助DCW采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496138
求助须知:如何正确求助?哪些是违规求助? 4593973
关于积分的说明 14442695
捐赠科研通 4526527
什么是DOI,文献DOI怎么找? 2480178
邀请新用户注册赠送积分活动 1464867
关于科研通互助平台的介绍 1437653