Multimodal Hierarchical Graph Collaborative Filtering for Multimedia-Based Recommendation

计算机科学 协同过滤 图形 人机交互 多通道交互 情报检索 人工智能 推荐系统 机器学习 多媒体 理论计算机科学
作者
Kang Liu,Feng Xue,Shuaiyang Li,Sheng Sang,Richang Hong
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 216-227 被引量:8
标识
DOI:10.1109/tcss.2022.3226862
摘要

Multimedia-based recommendation (MMRec) is a challenging task, which goes beyond the collaborative filtering (CF) schema that only captures collaborative signals from interactions and explores multimodal user preference cues hidden in complex multimedia content. Despite the significant progress of current solutions for MMRec, we argue that they are limited by multimodal noise contamination. Specifically, a considerable amount of preference-irrelevant multimodal noise (e.g., the background, layout, and brightness in the image of the product) is incorporated into the representation learning of items, which contaminates the modeling of multimodal user preferences. Moreover, most of the latest researches are based on graph convolution networks (GCNs), which means that multimodal noise contamination is further amplified because noisy information is continuously propagated over the user–item interaction graph as recursive neighbor aggregations are performed. To address this problem, instead of the common MMRec paradigm which learns user preferences in an integrated manner, we propose a hierarchical framework to separately learn collaborative signals and multimodal preferences cues, thus preventing multimodal noise from flowing into collaborative signals. Then, to alleviate the noise contamination for multimodal user preference modeling, we propose to extract semantic entities from multimodal content that are more relevant to user interests, which can model semantic-level multimodal preferences and thus remove a large fraction of noise. Furthermore, we use the full multimodal features to model content-level multimodal preferences like the existing MMRec solutions, which ensures the sufficient utilization of multimodal information. Overall, we develop a novel model, multimodal hierarchical graph CF (MHGCF), which consists of three types of GCN modules tailored to capture collaborative signals, semantic-level preferences, and content-level preferences, respectively. We conduct extensive experiments to demonstrate the effectiveness of MHGCF and its components. The complete data and codes of MHGCF are available at https://github.com/hfutmars/MHGCF .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐应助祯果粒采纳,获得10
刚刚
1秒前
1秒前
鼓励男孩发布了新的文献求助10
3秒前
完美冷安完成签到,获得积分10
4秒前
4秒前
6秒前
子予发布了新的文献求助10
7秒前
8秒前
liu完成签到,获得积分10
8秒前
566发布了新的文献求助10
9秒前
11秒前
五五哥发布了新的文献求助10
14秒前
祯果粒发布了新的文献求助10
14秒前
15秒前
水若琳发布了新的文献求助10
17秒前
Young应助鲜艳的熊猫采纳,获得10
17秒前
李健应助566采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
茵茵应助科研通管家采纳,获得20
19秒前
19秒前
起风了完成签到,获得积分10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
科目三应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
英俊的铭应助安静采纳,获得10
20秒前
怡然铃铛发布了新的文献求助10
21秒前
22秒前
24秒前
25秒前
发酱发布了新的文献求助10
25秒前
孤独的小屁孩完成签到,获得积分10
27秒前
可靠荠发布了新的文献求助10
27秒前
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826664
求助须知:如何正确求助?哪些是违规求助? 3368977
关于积分的说明 10453373
捐赠科研通 3088541
什么是DOI,文献DOI怎么找? 1699175
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770148