Characteristic gene prognostic model of type 1 diabetes mellitus <i>via</i> machine learning strategy

生物 糖尿病 计算生物学 医学 内科学 内分泌学
作者
Fenglin Wang,Jiemei Liang,Di Zhu,Pengan Xiang,Luyao Zhou,Caizhe Yang
出处
期刊:Endocrine Journal [The Japan Endocrine Society]
卷期号:70 (3): 281-294 被引量:2
标识
DOI:10.1507/endocrj.ej22-0178
摘要

The present study was designed to detect possible biomarkers associated with Type 1 diabetes mellitus (T1DM) incidence in an effort to develop novel treatments for this condition. Three mRNA expression datasets of peripheral blood mononuclear cells (PBMCs) were obtained from the GEO database. Differentially expressed genes (DEGs) between T1DM patients and healthy controls were identified by Limma package in R, and using the DEGs to conduct GO and DO pathway enrichment. The LASSO-SVM were used to screen the hub genes. We performed immune correlation analysis of hub genes and established a T1DM prognosis model. CIBERSORT algorithm was used to identify the different immune cells in distribution between T1DM and normal samples. The correlation of the hub genes and immune cells was analyzed by Spearman. ROC curves were used to assess the diagnostic value of genes in T1DM. A total of 60 immune related DEGs were obtained from the T1DM and normal samples. Then, DEGs were further screened to obtain 3 hub genes, ANP32A-IT1, ESCO2 and NBPF1. CIBERSORT analysis revealed the percentage of immune cells in each sample, indicating that there was significant difference in monocytes, T cells CD8+, gamma delta T cells, naive CD4+ T cells and activated memory CD4+ T cells between T1DM and normal samples. The area under curve (AUC) of ESCO2, ANP32A-IT1 and NBPF1 were all greater than 0.8, indicating that these three genes have high diagnostic value for T1DM. Together, the findings of these bioinformatics analyses thus identified key hub genes associated with T1DM development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助huanir99采纳,获得10
刚刚
pj发布了新的文献求助10
刚刚
ChenYX发布了新的文献求助20
刚刚
刚刚
炒栗子完成签到,获得积分10
2秒前
2秒前
4秒前
yuhang完成签到,获得积分10
5秒前
6秒前
lulu发布了新的文献求助10
6秒前
7秒前
朴实寻双发布了新的文献求助10
7秒前
hug沅沅发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
yingziiii发布了新的文献求助10
12秒前
12秒前
mao完成签到 ,获得积分10
13秒前
mayy0408发布了新的文献求助10
14秒前
小二郎应助粗心的从露采纳,获得10
15秒前
16秒前
ChenYX发布了新的文献求助10
17秒前
浮游应助yyanxuemin919采纳,获得10
18秒前
轻舟完成签到,获得积分10
18秒前
活力的fang发布了新的文献求助10
18秒前
Vanessa完成签到 ,获得积分10
18秒前
19秒前
科研通AI6应助cccc采纳,获得10
19秒前
19秒前
流云完成签到,获得积分10
21秒前
蓝天应助Crescent采纳,获得10
22秒前
an发布了新的文献求助10
23秒前
lulu完成签到,获得积分10
27秒前
28秒前
29秒前
PPT完成签到,获得积分20
30秒前
30秒前
33秒前
呆萌依珊完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563499
求助须知:如何正确求助?哪些是违规求助? 4648316
关于积分的说明 14684514
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462395