Metabolic adaptation to environmental changes, such as fasting and cold exposure, involves a dynamic shift in fuel utilization from glucose to fatty acid oxidation, a process that relies on carnitine-mediated fatty acid oxidation in mitochondria. While dietary sources of animal origin (e.g., red meat) contribute to the carnitine pool, de novo carnitine synthesis from trimethyllysine (TML) is essential, particularly for those whose dietary sources are vegetables and fruits that contain negligible amounts of carnitine. However, the molecular pathway of de novo carnitine synthesis and its physiological significance remain poorly understood. Here, we showed that SLC25A45 is a mitochondrial TML carrier that controls de novo carnitine biosynthesis in vivo. Genetic loss of SLC25A45 results in systemic carnitine and acylcarnitine deficiency, leading to impaired fatty acid oxidation and thermogenesis during cold adaptation, while promoting glucose catabolism. Notably, Slc25a45-deficient mice maintained a high respiratory exchange ratio and impaired lipid mobilization following treatment with a GLP1 receptor agonist (GLP-1RA), rendering them resistant to GLP-1RA-induced adipose tissue loss. Together, the present study identifies SLC25A45 as a regulatory checkpoint in fuel switching during adaptation, with implications for systemic energy balance and response to GLP-1RA-mediated anti-obesity therapy.