Development and validation of a risk scoring tool for predicting incident reversible cognitive frailty among community‐dwelling older adults: A prospective cohort study

老年学 无症状的 前瞻性队列研究 队列 认知 认知障碍 队列研究 医学 精神科 内科学
作者
Qinqin Liu,Huaxin Si,Yanyan Li,Wendie Zhou,Jiaqi Yu,Yanhui Bian,Cuili Wang
出处
期刊:Geriatrics & Gerontology International [Wiley]
卷期号:24 (9): 874-882
标识
DOI:10.1111/ggi.14942
摘要

Aim Reversible cognitive frailty (RCF) is an ideal target to prevent asymptomatic cognitive impairment and dependency. This study aimed to develop and validate prediction models for incident RCF. Methods A total of 1230 older adults aged ≥60 years from China Health and Retirement Longitudinal Study 2011–2013 survey were included as the training set. The modified Poisson regression and three machine learning algorithms including eXtreme Gradient Boosting, support vector machine and random forest were used to develop prediction models. All models were evaluated internally with fivefold cross‐validation, and evaluated externally using a temporal validation method through the China Health and Retirement Longitudinal Study 2013–2015 survey. Results The incidence of RCF was 27.4% in the training set and 27.5% in the external validation set. A total of 13 important predictors were selected to develop the model, including age, education, contact with their children, medical insurance, vision impairment, heart diseases, medication types, self‐rated health, pain locations, loneliness, self‐medication, night‐time sleep and having running water. All models showed acceptable or approximately acceptable discrimination (AUC 0.683–0.809) for the training set, but fair discrimination (AUC 0.568–0.666) for the internal and external validation. For calibration, only modified Poisson regression and eXtreme Gradient Boosting were acceptable in the training set. All models had acceptable overall prediction performance and clinical usefulness. Older adults were divided into three groups by the risk scoring tool constructed based on modified Poisson regression: low risk (≤24), median risk (24–29) and high risk (>29). Conclusions This risk tool could assist healthcare providers to predict incident RCF among older adults in the next 2 years, facilitating early identification of a high‐risk population of RCF. Geriatr Gerontol Int 2024; 24: 874–882 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ayyy完成签到,获得积分10
2秒前
惘然111222发布了新的文献求助10
2秒前
2秒前
guohuan完成签到,获得积分10
4秒前
堃kun发布了新的文献求助10
5秒前
123456qi发布了新的文献求助10
5秒前
高高羊发布了新的文献求助10
5秒前
6秒前
LLL完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助20
6秒前
6秒前
ayyy发布了新的文献求助10
6秒前
sxy发布了新的文献求助10
7秒前
健忘的元冬应助忧虑的凛采纳,获得10
8秒前
zhuangbaobao发布了新的文献求助100
8秒前
8秒前
9秒前
NexusExplorer应助南国之霄采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
11秒前
猪也吃草应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
wuliqun发布了新的文献求助10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420251
求助须知:如何正确求助?哪些是违规求助? 4535385
关于积分的说明 14149881
捐赠科研通 4452462
什么是DOI,文献DOI怎么找? 2442152
邀请新用户注册赠送积分活动 1433648
关于科研通互助平台的介绍 1410945