Deciphering 3'UTR Mediated Gene Regulation Using Interpretable Deep Representation Learning

计算生物学 代表(政治) 基因 深度学习 人工智能 非翻译区 生物 计算机科学 遗传学 信使核糖核酸 政治学 政治 法学
作者
Yuning Yang,Gen Li,Kuan Pang,Wuxinhao Cao,Xiangtao Li,Zhaolei Zhang
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202407013
摘要

The 3' untranslated regions (3'UTRs) of messenger RNAs contain many important cis-regulatory elements that are under functional and evolutionary constraints. It is hypothesized that these constraints are similar to grammars and syntaxes in human languages and can be modeled by advanced natural language techniques such as Transformers, which has been very effective in modeling complex protein sequence and structures. Here 3UTRBERT is described, which implements an attention-based language model, i.e., Bidirectional Encoder Representations from Transformers (BERT). 3UTRBERT is pre-trained on aggregated 3'UTR sequences of human mRNAs in a task-agnostic manner; the pre-trained model is then fine-tuned for specific downstream tasks such as identifying RBP binding sites, m6A RNA modification sites, and predicting RNA sub-cellular localizations. Benchmark results show that 3UTRBERT generally outperformed other contemporary methods in each of these tasks. More importantly, the self-attention mechanism within 3UTRBERT allows direct visualization of the semantic relationship between sequence elements and effectively identifies regions with important regulatory potential. It is expected that 3UTRBERT model can serve as the foundational tool to analyze various sequence labeling tasks within the 3'UTR fields, thus enhancing the decipherability of post-transcriptional regulatory mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
慕青应助黄雅静采纳,获得50
3秒前
纪靖雁发布了新的文献求助10
3秒前
3秒前
niuniu完成签到,获得积分10
3秒前
开心快乐发大财完成签到,获得积分10
4秒前
DDAIDN完成签到,获得积分10
5秒前
5秒前
皮皮发布了新的文献求助10
5秒前
木象爱火锅完成签到,获得积分10
5秒前
6秒前
Loik完成签到,获得积分10
6秒前
8秒前
9秒前
Loik发布了新的文献求助10
9秒前
英俊的铭应助Math4396采纳,获得10
9秒前
10秒前
现代的东蒽完成签到,获得积分20
10秒前
10秒前
科研通AI5应助不下雨采纳,获得10
11秒前
12秒前
共享精神应助纪靖雁采纳,获得10
12秒前
12秒前
林钟望完成签到,获得积分10
12秒前
在水一方应助Qiao采纳,获得10
13秒前
科研通AI5应助糊涂的丹南采纳,获得10
14秒前
NexusExplorer应助大号采纳,获得10
14秒前
Ava应助现代的东蒽采纳,获得10
14秒前
15秒前
诚心的砖头完成签到,获得积分10
15秒前
16秒前
Stting发布了新的文献求助10
17秒前
17秒前
Math4396发布了新的文献求助10
20秒前
等待的平凡完成签到,获得积分10
20秒前
丽莫莫完成签到,获得积分10
21秒前
玉小赤发布了新的文献求助10
22秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144