Deep Learning-Based Model for Non-invasive Hemoglobin Estimation via Body Parts Images: A Retrospective Analysis and a Prospective Emergency Department Study

急诊科 估计 人工智能 急诊医学 回顾性队列研究 医学 医疗急救 计算机科学 机器学习 工程类 内科学 系统工程 精神科
作者
En-Ting Lin,Shao-Chi Lu,An-Sheng Liu,Chia-Hsin Ko,Chien‐Hua Huang,Chu‐Lin Tsai,Li‐Chen Fu
标识
DOI:10.1007/s10278-024-01209-4
摘要

Anemia is a significant global health issue, affecting over a billion people worldwide, according to the World Health Organization. Generally, the gold standard for diagnosing anemia relies on laboratory measurements of hemoglobin. To meet the need in clinical practice, physicians often rely on visual examination of specific areas, such as conjunctiva, to assess pallor. However, this method is subjective and relies on the physician's experience. Therefore, we proposed a deep learning prediction model based on three input images from different body parts, namely, conjunctiva, palm, and fingernail. By incorporating additional body part labels and employing a fusion attention mechanism, the model learns and enhances the salient features of each body part during training, enabling it to produce reliable results. Additionally, we employ a dual loss function that allows the regression model to benefit from well-established classification methods, thereby achieving stable handling of minority samples. We used a retrospective data set (EYES-DEFY-ANEMIA) to develop this model called Body-Part-Anemia Network (BPANet). The BPANet showed excellent performance in detecting anemia, with accuracy of 0.849 and an F1-score of 0.828. Our multi-body-part model has been validated on a prospectively collected data set of 101 patients in National Taiwan University Hospital. The prediction accuracy as well as F1-score can achieve as high as 0.716 and 0.788, respectively. To sum up, we have developed and validated a novel non-invasive hemoglobin prediction model based on image input from multiple body parts, with the potential of real-time use at home and in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
morph完成签到 ,获得积分10
刚刚
SavvyYung完成签到,获得积分10
1秒前
赛因斯完成签到,获得积分10
2秒前
2秒前
华仔应助环糊精采纳,获得10
2秒前
2秒前
dddd完成签到,获得积分10
3秒前
叫我少爷完成签到 ,获得积分10
3秒前
momo完成签到,获得积分10
6秒前
乐乐应助lin采纳,获得10
6秒前
水菜泽子发布了新的文献求助10
7秒前
8秒前
激动的一手完成签到,获得积分10
9秒前
壮观缘分发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
大方的尔烟完成签到,获得积分10
13秒前
Zhaoyuemeng发布了新的文献求助10
14秒前
SWZ发布了新的文献求助10
15秒前
白衣未央完成签到,获得积分10
16秒前
环糊精发布了新的文献求助10
16秒前
水菜泽子完成签到,获得积分10
17秒前
活泼靖柏完成签到,获得积分20
17秒前
wanci应助Zhaoyuemeng采纳,获得10
18秒前
18秒前
wenwen发布了新的文献求助10
18秒前
19秒前
Coraline完成签到,获得积分10
21秒前
22秒前
幽默飞雪完成签到 ,获得积分10
22秒前
维尼完成签到,获得积分10
22秒前
穆思柔完成签到,获得积分10
23秒前
活泼靖柏发布了新的文献求助20
23秒前
24秒前
Zhaoyuemeng完成签到,获得积分10
24秒前
26秒前
犹豫若云完成签到,获得积分10
27秒前
星光熠熠发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3526007
关于积分的说明 11229870
捐赠科研通 3263850
什么是DOI,文献DOI怎么找? 1801703
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767