Multimodal Machine Learning‐Based Marker Enables Early Detection and Prognosis Prediction for Hyperuricemia

高尿酸血症 计算机科学 人工智能 机器学习 医学 内科学 尿酸
作者
Lin Zeng,Pengcheng Ma,Zeyang Li,Shengxing Liang,Chengkai Wu,Chang Hong,Yan Li,Hao Cui,Ruining Li,Jiaren Wang,Jingzhe He,Wenyuan Li,Lushan Xiao,Li Liu
出处
期刊:Advanced Science [Wiley]
被引量:16
标识
DOI:10.1002/advs.202404047
摘要

Abstract Hyperuricemia (HUA) has emerged as the second most prevalent metabolic disorder characterized by prolonged and asymptomatic period, triggering gout and metabolism‐related outcomes. Early detection and prognosis prediction for HUA and gout are crucial for pre‐emptive interventions. Integrating genetic and clinical data from 421287 UK Biobank and 8900 Nanfang Hospital participants, a stacked multimodal machine learning model is developed and validated to synthesize its probabilities as an in‐silico quantitative marker for hyperuricemia (ISHUA). The model demonstrates satisfactory performance in detecting HUA, exhibiting area under the curves (AUCs) of 0.859, 0.836, and 0.779 within the train, internal, and external test sets, respectively. ISHUA is significantly associated with gout and metabolism‐related outcomes, effectively classifying individuals into low‐ and high‐risk groups for gout in the train (AUC, 0.815) and internal test (AUC, 0.814) sets. The high‐risk group shows increased susceptibility to metabolism‐related outcomes, and participants with intermediate or favorable lifestyle profiles have hazard ratios of 0.75 and 0.53 for gout compared with those with unfavorable lifestyles. Similar trends are observed for other metabolism‐related outcomes. The multimodal machine learning‐based ISHUA marker enables personalized risk stratification for gout and metabolism‐related outcomes, and it is unveiled that lifestyle changes can ameliorate these outcomes within high‐risk group, providing guidance for preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dorren发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
胡马虎发布了新的文献求助30
1秒前
xzy998驳回了芒果应助
3秒前
共享精神应助跳跃的煜祺采纳,获得10
3秒前
3秒前
4秒前
攸宁完成签到,获得积分10
4秒前
Krystal发布了新的文献求助50
4秒前
无花果应助CT采纳,获得10
5秒前
lucieliu发布了新的文献求助10
5秒前
生化小卜完成签到,获得积分10
5秒前
YUAN发布了新的文献求助10
5秒前
淡定自中发布了新的文献求助10
5秒前
6秒前
jinsijia完成签到,获得积分10
6秒前
自由莺发布了新的文献求助10
6秒前
7秒前
不知不止不桎完成签到,获得积分10
8秒前
吴青发布了新的文献求助30
8秒前
9秒前
9秒前
CipherSage应助xuexue采纳,获得10
9秒前
10秒前
10秒前
妄想天使完成签到,获得积分10
11秒前
11秒前
舒心傲易发布了新的文献求助10
11秒前
jeffery应助Y7ue采纳,获得10
11秒前
科研通AI2S应助mani采纳,获得10
12秒前
今后应助李念采纳,获得10
12秒前
小卷粉完成签到 ,获得积分10
13秒前
传奇3应助木秀采纳,获得10
13秒前
13秒前
wanci应助激昂的柚子采纳,获得10
15秒前
欣喜雅香完成签到,获得积分20
15秒前
wxyshare应助科研通管家采纳,获得10
16秒前
Tania完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5168650
求助须知:如何正确求助?哪些是违规求助? 4360263
关于积分的说明 13575653
捐赠科研通 4206994
什么是DOI,文献DOI怎么找? 2307263
邀请新用户注册赠送积分活动 1306833
关于科研通互助平台的介绍 1253497