清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dynamic prediction of lung cancer suicide risk based on meteorological factors and clinical characteristics:A landmarking analysis approach

医学 肺癌 比例危险模型 婚姻状况 人口学 自杀未遂 流行病学 毒物控制 老年学 内科学 伤害预防 人口 环境卫生 社会学
作者
Yuying Zhou,Jiahui Lao,Yiting Cao,Qianqian Wang,Qin Wang,Fang Tang
出处
期刊:Social Science & Medicine [Elsevier BV]
卷期号:357: 117201-117201
标识
DOI:10.1016/j.socscimed.2024.117201
摘要

Suicide is a severe public health issue globally. Accurately identifying high-risk lung cancer patients for suicidal behavior and taking timely intervention measures has become a focus of current research. This study intended to construct dynamic prediction models for identifying suicide risk among lung cancer patients. Patients were sourced from the Surveillance, Epidemiology, and End Results database, while meteorological data was acquired from the Centers for Disease Control and Prevention. This cohort comprised 455, 708 eligible lung cancer patients from January 1979 to December 2011. A Cox proportional hazard regression model based on landmarking approach was employed to explore the impact of meteorological factors and clinical characteristics on suicide among lung cancer patients, and to build dynamic prediction models for the suicide risk of these patients. Additionally, subgroup analyses were conducted by age and sex. The model's performance was evaluated using the C-index, Brier score, area under curve (AUC) and calibration plot. During the study period, there were 666 deaths by suicide among lung cancer patients. Multivariable Cox results from the dynamic prediction model indicated that age, marital status, race, sex, primary site, stage, monthly average daily sunlight, and monthly average temperature were significant predictors of suicide. The dynamic prediction model demonstrated well consistency and discrimination capabilities. Subgroup analyses revealed that the association of monthly average daily sunlight and monthly average temperature with suicide remained significant among female and younger lung cancer patients. The dynamic prediction model can effectively incorporate covariates with time-varying to predict lung cancer patients' suicide death. The results of this study have significant implications for assessing lung cancer individuals' suicide risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fev123完成签到,获得积分10
33秒前
Alex-Song完成签到 ,获得积分0
1分钟前
巴达天使完成签到,获得积分10
1分钟前
charih完成签到 ,获得积分10
1分钟前
积极的中蓝完成签到 ,获得积分10
2分钟前
陶军辉完成签到 ,获得积分10
2分钟前
许之北完成签到 ,获得积分10
4分钟前
4分钟前
奔跑的蒲公英完成签到,获得积分10
4分钟前
Jayzie完成签到 ,获得积分10
4分钟前
widesky777完成签到 ,获得积分0
4分钟前
不秃燃的小老弟完成签到 ,获得积分10
6分钟前
6分钟前
冬去春来完成签到 ,获得积分10
6分钟前
7分钟前
asdasd发布了新的文献求助10
7分钟前
隐形曼青应助asdasd采纳,获得10
7分钟前
无花果应助Demi_Ming采纳,获得10
7分钟前
7分钟前
Demi_Ming发布了新的文献求助10
7分钟前
Akim应助陶醉的手套采纳,获得10
8分钟前
宇文非笑完成签到 ,获得积分0
8分钟前
juan完成签到 ,获得积分10
8分钟前
MchemG应助科研通管家采纳,获得10
8分钟前
科研通AI5应助陶醉的手套采纳,获得10
9分钟前
9分钟前
万能图书馆应助张立人采纳,获得10
9分钟前
9分钟前
9分钟前
张立人发布了新的文献求助10
9分钟前
大英留子千早爱音完成签到,获得积分10
10分钟前
萝卜猪完成签到,获得积分10
10分钟前
MchemG应助科研通管家采纳,获得10
10分钟前
MchemG应助科研通管家采纳,获得20
10分钟前
10分钟前
远远gby发布了新的文献求助10
10分钟前
luha完成签到,获得积分10
11分钟前
11分钟前
远远gby完成签到,获得积分20
11分钟前
11分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341124
捐赠科研通 3065185
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600