Injecting Text Clues for Improving Anomalous Event Detection from Weakly Labeled Videos

计算机科学 事件(粒子物理) 人工智能 模式识别(心理学) 自然语言处理 物理 量子力学
作者
Tianshan Liu,Kin‐Man Lam,Bing‐Kun Bao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5907-5920 被引量:2
标识
DOI:10.1109/tip.2024.3477351
摘要

Video anomaly detection (VAD) aims at localizing the snippets containing anomalous events in long unconstrained videos. The weakly supervised (WS) setting, where solely video-level labels are available during training, has attracted considerable attention, owing to its satisfactory trade-off between the detection performance and annotation cost. However, due to lack of snippet-level dense labels, the existing WS-VAD methods still get easily stuck on the detection errors, caused by false alarms and incomplete localization. To address this dilemma, in this paper, we propose to inject text clues of anomaly-event categories for improving WS-VAD, via a dedicated dual-branch framework. For suppressing the response of confusing normal contexts, we first present a text-guided anomaly discovering (TAG) branch based on a hierarchical matching scheme, which utilizes the label-text queries to search the discriminative anomalous snippets in a global-to-local fashion. To facilitate the completeness of anomaly-instance localization, an anomaly-conditioned text completion (ATC) branch is further designed to perform an auxiliary generative task, which intrinsically forces the model to gather sufficient event semantics from all the relevant anomalous snippets for completely reconstructing the masked description sentence. Furthermore, to encourage the cross-branch knowledge sharing, a mutual learning strategy is introduced by imposing a consistency constraint on the anomaly scores of these two branches. Extensive experimental results on two public benchmarks validate that the proposed method achieves superior performance over the competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
493749发布了新的文献求助10
刚刚
感动含双发布了新的文献求助10
1秒前
l123完成签到 ,获得积分10
1秒前
虚幻梦露发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
我的昵称发布了新的文献求助10
2秒前
爆米花应助山河远采纳,获得10
2秒前
FCH2023完成签到,获得积分10
3秒前
3秒前
3秒前
深情安青应助橘橘如意令采纳,获得10
3秒前
4秒前
4秒前
5秒前
哈伊呀发布了新的文献求助30
5秒前
6秒前
艺术大师完成签到,获得积分20
6秒前
7秒前
8秒前
陈源发布了新的文献求助10
8秒前
科研通AI6应助chl采纳,获得10
8秒前
艺术大师发布了新的文献求助10
8秒前
xx完成签到,获得积分20
9秒前
9秒前
娇气的觅儿完成签到,获得积分10
9秒前
10秒前
洁净的思萱完成签到,获得积分10
11秒前
11秒前
MM完成签到 ,获得积分10
11秒前
xiaobai完成签到,获得积分10
12秒前
12秒前
深情安青应助冉遗采纳,获得10
12秒前
深情安青应助哭泣的时光采纳,获得10
12秒前
唐文硕发布了新的文献求助10
12秒前
rongliangyang完成签到,获得积分10
13秒前
风华漫舞完成签到,获得积分10
14秒前
科研通AI6应助陈源采纳,获得10
14秒前
lu完成签到 ,获得积分10
15秒前
朱黛娣发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411660
求助须知:如何正确求助?哪些是违规求助? 4529156
关于积分的说明 14118010
捐赠科研通 4443774
什么是DOI,文献DOI怎么找? 2438394
邀请新用户注册赠送积分活动 1430680
关于科研通互助平台的介绍 1408214