亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Monocular-Vision-Based Method for Locating the Center of Anchor Holes on Steel Belts in Coal Mine Roadways

煤矿开采 采矿工程 地质学 计算机视觉 验光服务 工程类 计算机科学 医学 废物管理
作者
Mengyu Lei,Xuhui Zhang,Xin Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (16): 7080-7080
标识
DOI:10.3390/app14167080
摘要

The precise positioning of anchoring-hole centers on the steel belts used for anchor support in coal mines is essential for improving the automation and efficiency of roadway support. To address the issues of poor positioning accuracy and the low support efficiency caused by the manual determination of anchoring-hole-center positions, this paper proposes a monocular-vision-based method for locating anchoring-hole centers. Firstly, a laser pointer and an industrial camera are used to build an anchoring-hole positioning device, and its visual positioning model is constructed to achieve the automatic and precise localization of the anchoring-hole center. Secondly, to overcome the difficulty of obtaining high-precision spot centers using edge and grayscale information-based spot extraction methods, a spot center extraction method based on two-dimensional arctangent function fitting is proposed, achieving high precision and the stable acquisition of spot pixel coordinates. The experimental results show that the average measurement errors of the anchoring-hole centers in the camera’s coordinate system along the X-axis, Y-axis, and Z-axis are 3.36 mm, 3.30 mm, and 5.75 mm, respectively, with maximum errors of 4.23 mm, 4.39 mm, and 6.63 mm. The average measurement errors of the steel belt’s pitch, yaw, and roll angles in the camera’s coordinate system are 0.16°, 0.16°, and 0.08°, respectively, with maximum errors of 0.21°, 0.27°, and 0.13°. The proposed method can achieve the precise localization of anchoring holes, improve the efficiency of roadway support, and provide new insights for the automation and intelligentization of roadway anchor support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
酷波er应助无情的琳采纳,获得10
12秒前
12秒前
14秒前
21秒前
三心草完成签到 ,获得积分10
25秒前
34秒前
41秒前
44秒前
无情的琳发布了新的文献求助10
45秒前
49秒前
1分钟前
sidashu发布了新的文献求助10
1分钟前
852应助无情的琳采纳,获得10
1分钟前
静静完成签到 ,获得积分10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
2分钟前
2分钟前
Dannnn完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Bob发布了新的文献求助10
2分钟前
2分钟前
无情的琳发布了新的文献求助10
2分钟前
2分钟前
么西么西发布了新的文献求助10
2分钟前
2分钟前
傻傻的哈密瓜完成签到,获得积分10
2分钟前
2分钟前
WQ完成签到,获得积分20
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
3分钟前
牛八先生完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724088
求助须知:如何正确求助?哪些是违规求助? 5284344
关于积分的说明 15299562
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616703
邀请新用户注册赠送积分活动 1566595
关于科研通互助平台的介绍 1523430