Cross-Modality Image Translation From Brain 18F-FDG PET/CT Images to Fluid-Attenuated Inversion Recovery Images Using the CypixGAN Framework

流体衰减反转恢复 正电子发射断层摄影术 人工智能 核医学 模式识别(心理学) 神经影像学 相似性(几何) 磁共振成像 图像质量 医学 计算机科学 放射科 图像(数学) 精神科
作者
Sangwon Lee,Jin Ho Jung,Yong Choi,Eunyeong Seok,Jiwoong Jung,Hyunkeong Lim,Dongwoo Kim,Mijin Yun
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rlu.0000000000005441
摘要

Purpose PET/CT and MRI can accurately diagnose dementia but are expensive and inconvenient for patients. Therefore, we aimed to generate synthetic fluid-attenuated inversion recovery (FLAIR) images from 18 F-FDG PET and CT images of the human brain using a generative adversarial network (GAN)–based deep learning framework called the CypixGAN, which combined the CycleGAN framework with the L1 loss function of the pix2pix. Patients and Methods Data from 143 patients who underwent PET/CT and MRI were used for training (n = 79), validation (n = 20), and testing (n = 44) the deep learning frameworks. Synthetic FLAIR images were generated using the pix2pix, CycleGAN, and CypixGAN, and white matter hyperintensities (WMHs) were then segmented. The performance of CypixGAN was compared with that of the other frameworks. Results The CypixGAN outperformed the pix2pix and CycleGAN in generating synthetic FLAIR images with superior visual quality. Peak signal-to-noise ratio and structural similarity index (mean ± standard deviation) estimated using the CypixGAN (20.23 ± 1.31 and 0.80 ± 0.02, respectively) were significantly higher than those estimated using the pix2pix (19.35 ± 1.43 and 0.79 ± 0.02, respectively) and CycleGAN (18.74 ± 1.49 and 0.78 ± 0.02, respectively) ( P < 0.001). WMHs in synthetic FLAIR images generated using the CypixGAN closely resembled those in ground-truth images, as indicated by the low absolute percentage volume differences and high dice similarity coefficients. Conclusions The CypixGAN generated high-quality FLAIR images owing to the preservation of spatial information despite using unpaired images. This framework may help improve diagnostic performance and cost-effectiveness of PET/CT when MRI scan is unavailable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenjian完成签到,获得积分10
刚刚
yong发布了新的文献求助20
刚刚
玛卡巴卡发布了新的文献求助10
1秒前
科研通AI5应助耍酷蝴蝶采纳,获得30
1秒前
3秒前
4秒前
4秒前
6秒前
杰king完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助季乔采纳,获得10
8秒前
爆米花应助lucas采纳,获得10
9秒前
开心绫完成签到,获得积分10
9秒前
知更鸟发布了新的文献求助10
10秒前
冰魂应助舒适路人采纳,获得10
10秒前
冷酷曼容发布了新的文献求助10
11秒前
11秒前
eyou完成签到,获得积分10
12秒前
科研通AI5应助zhang狗子采纳,获得10
12秒前
jojo完成签到 ,获得积分10
12秒前
123完成签到,获得积分10
12秒前
13秒前
yong完成签到,获得积分20
15秒前
李健的粉丝团团长应助KK采纳,获得10
17秒前
安详的大雁完成签到,获得积分10
17秒前
Orange应助123采纳,获得10
18秒前
Dr.Dream完成签到,获得积分10
19秒前
所所应助动听的谷秋采纳,获得10
20秒前
20秒前
22秒前
充电宝应助舒适路人采纳,获得10
22秒前
思源应助冷酷曼容采纳,获得10
22秒前
不安夏青发布了新的文献求助10
23秒前
25秒前
自然的戒指完成签到,获得积分10
25秒前
星辰大海应助乔安娜采纳,获得30
25秒前
26秒前
28秒前
学术大王发布了新的文献求助10
29秒前
ooooozhubi关注了科研通微信公众号
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372