Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA–gene–disease networks

计算机科学 图形 稳健性(进化) 机器学习 特征学习 人工智能 生物网络 理论计算机科学 计算生物学 基因 生物 生物化学
作者
Yuxuan Si,Zihan Huang,Zhengqing Fang,Zhouhang Yuan,Zhengxing Huang,Yingming Li,Ying Wei,Fei Wu,Yu‐Feng Yao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5)
标识
DOI:10.1093/bib/bbae443
摘要

Abstract Unraveling the intricate network of associations among microRNAs (miRNAs), genes, and diseases is pivotal for deciphering molecular mechanisms, refining disease diagnosis, and crafting targeted therapies. Computational strategies, leveraging link prediction within biological graphs, present a cost-efficient alternative to high-cost empirical assays. However, while plenty of methods excel at predicting specific associations, such as miRNA–disease associations (MDAs), miRNA–target interactions (MTIs), and disease–gene associations (DGAs), a holistic approach harnessing diverse data sources for multifaceted association prediction remains largely unexplored. The limited availability of high-quality data, as vitro experiments to comprehensively confirm associations are often expensive and time-consuming, results in a sparse and noisy heterogeneous graph, hindering an accurate prediction of these complex associations. To address this challenge, we propose a novel framework called Global-local aware Heterogeneous Graph Contrastive Learning (GlaHGCL). GlaHGCL combines global and local contrastive learning to improve node embeddings in the heterogeneous graph. In particular, global contrastive learning enhances the robustness of node embeddings against noise by aligning global representations of the original graph and its augmented counterpart. Local contrastive learning enforces representation consistency between functionally similar or connected nodes across diverse data sources, effectively leveraging data heterogeneity and mitigating the issue of data scarcity. The refined node representations are applied to downstream tasks, such as MDA, MTI, and DGA prediction. Experiments show GlaHGCL outperforming state-of-the-art methods, and case studies further demonstrate its ability to accurately uncover new associations among miRNAs, genes, and diseases. We have made the datasets and source code publicly available at https://github.com/Sue-syx/GlaHGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZQP发布了新的文献求助10
刚刚
hdisyd完成签到 ,获得积分10
刚刚
小蘑菇应助thinter采纳,获得10
2秒前
所所应助ZQP采纳,获得10
3秒前
JamesPei应助Sean采纳,获得10
4秒前
hou发布了新的文献求助10
6秒前
上官若男应助xiaoyuan采纳,获得10
14秒前
稀饭完成签到,获得积分10
14秒前
bkagyin应助晓雯采纳,获得10
16秒前
充电宝应助Dylan采纳,获得10
18秒前
大模型应助Sue kong采纳,获得10
19秒前
充电宝应助DJ采纳,获得10
20秒前
故意的松思应助小李采纳,获得20
20秒前
qzy9527完成签到 ,获得积分10
23秒前
研友_LjDyNZ发布了新的文献求助10
24秒前
25秒前
27秒前
29秒前
眼睛大安珊完成签到 ,获得积分10
30秒前
在水一方应助LKT采纳,获得10
30秒前
小玲子发布了新的文献求助10
32秒前
wsh完成签到 ,获得积分10
34秒前
秦琨发布了新的文献求助10
35秒前
36秒前
38秒前
38秒前
39秒前
信号灯发布了新的文献求助10
39秒前
thinter发布了新的文献求助10
42秒前
SYLH应助哲哩个贤采纳,获得10
43秒前
43秒前
骨科小白发布了新的文献求助10
44秒前
勋勋xxx完成签到,获得积分10
45秒前
不喜发布了新的文献求助10
45秒前
秦琨完成签到,获得积分20
47秒前
pcykyt发布了新的文献求助10
47秒前
蘇q完成签到 ,获得积分10
48秒前
勋勋xxx发布了新的文献求助10
48秒前
Rage_Wang应助科研通管家采纳,获得20
49秒前
zho应助科研通管家采纳,获得10
49秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798163
求助须知:如何正确求助?哪些是违规求助? 3343617
关于积分的说明 10316986
捐赠科研通 3060333
什么是DOI,文献DOI怎么找? 1679484
邀请新用户注册赠送积分活动 806627
科研通“疑难数据库(出版商)”最低求助积分说明 763282