Multimodal Siamese Framework for Accurate Grade and Measure Estimation of Tropical Fruits

计算机科学 人工智能 卷积神经网络 残余物 架空(工程) 回归 人工神经网络 瓶颈 数据挖掘 均方误差 机器学习 模式识别(心理学) 统计 数学 算法 嵌入式系统 操作系统
作者
Misaj Sharafudeen,S. S. Vinod Chandra
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4283-4291 被引量:6
标识
DOI:10.1109/tii.2023.3316182
摘要

Fruits have always been a vital ingredient in a nutrient-rich diet. Ensuring the quality of crop production at the supplier level is equally essential to estimating the quantity measure of boxed fruits and their geographical origin at the consumer level. In this article, we propose an interlaced deep neural framework that aids in the accurate qualitative (freshness—good/bad) and quantitative (weights in kilograms) predictive analysis of tropical fruits and their origin in wholesale and retail fruit boxes. This methodology merges an object detection network (YOLOv7) and a deep multi-input multi-output siamese residual convolutional neural network (SRCNN), enabling simultaneous task accomplishment. Separate datasets were compiled to comprehend the initial tasks: Annotated FruitNet and FruiBox. The FruitNet360 dataset was reclustered based on the geographical origin of the fruit. A mean average precision score of 95.90% by YOLOv7 suggests a robust fruit quality detection and localization system. The interconnected siamese layers extract shared features from inputs, enhancing joint learning. The visual weight prediction system exhibited a marginal root-mean-squared error rate of a mere 0.157. The origin of the fruits was identified with 98.33% accuracy. The bottleneck layer of SRCNN facilitated simultaneous regression and classification, capturing the hidden dynamics of source data and contributing well to a combined regression and classification model. Our automation framework could surpass the drawbacks of conventional approaches and reduce the overhead expenses associated with a manual system. This framework could also be integrated into smart devices to assist vendors and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助非而者厚采纳,获得10
刚刚
科研通AI5应助wnx001111采纳,获得10
刚刚
杨枝甘露发布了新的文献求助10
1秒前
1秒前
共享精神应助火山羊采纳,获得10
1秒前
1秒前
1秒前
滑板鹿发布了新的文献求助10
2秒前
易千妤完成签到 ,获得积分10
2秒前
2秒前
hsa_ID完成签到,获得积分10
3秒前
安静的缘分完成签到,获得积分10
4秒前
坚强哑铃完成签到,获得积分10
4秒前
无头骑士发布了新的文献求助10
4秒前
5秒前
江南逢李龟年完成签到,获得积分10
5秒前
lh345769764完成签到,获得积分10
5秒前
mk_smile发布了新的文献求助10
6秒前
nanoyy完成签到,获得积分10
6秒前
浮游应助andy采纳,获得10
6秒前
usora发布了新的文献求助10
6秒前
科研通AI5应助DQ采纳,获得10
6秒前
heihei完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助50
6秒前
霊神之殇完成签到,获得积分10
7秒前
HH完成签到,获得积分10
7秒前
ha完成签到,获得积分10
7秒前
小果果完成签到,获得积分10
7秒前
7秒前
8秒前
大方的云朵完成签到,获得积分10
8秒前
9秒前
斯文香彤完成签到,获得积分10
9秒前
欣慰小蕊完成签到,获得积分10
10秒前
10秒前
九千岁完成签到,获得积分10
10秒前
香蕉觅云应助zhuzhu采纳,获得10
10秒前
10秒前
mk_smile完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068898
求助须知:如何正确求助?哪些是违规求助? 4290461
关于积分的说明 13367590
捐赠科研通 4110300
什么是DOI,文献DOI怎么找? 2250926
邀请新用户注册赠送积分活动 1256106
关于科研通互助平台的介绍 1188606