Multimodal Siamese Framework for Accurate Grade and Measure Estimation of Tropical Fruits

计算机科学 人工智能 卷积神经网络 残余物 架空(工程) 回归 人工神经网络 瓶颈 数据挖掘 均方误差 机器学习 模式识别(心理学) 统计 数学 嵌入式系统 算法 操作系统
作者
Misaj Sharafudeen,S. S. Vinod Chandra
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4283-4291 被引量:6
标识
DOI:10.1109/tii.2023.3316182
摘要

Fruits have always been a vital ingredient in a nutrient-rich diet. Ensuring the quality of crop production at the supplier level is equally essential to estimating the quantity measure of boxed fruits and their geographical origin at the consumer level. In this article, we propose an interlaced deep neural framework that aids in the accurate qualitative (freshness—good/bad) and quantitative (weights in kilograms) predictive analysis of tropical fruits and their origin in wholesale and retail fruit boxes. This methodology merges an object detection network (YOLOv7) and a deep multi-input multi-output siamese residual convolutional neural network (SRCNN), enabling simultaneous task accomplishment. Separate datasets were compiled to comprehend the initial tasks: Annotated FruitNet and FruiBox. The FruitNet360 dataset was reclustered based on the geographical origin of the fruit. A mean average precision score of 95.90% by YOLOv7 suggests a robust fruit quality detection and localization system. The interconnected siamese layers extract shared features from inputs, enhancing joint learning. The visual weight prediction system exhibited a marginal root-mean-squared error rate of a mere 0.157. The origin of the fruits was identified with 98.33% accuracy. The bottleneck layer of SRCNN facilitated simultaneous regression and classification, capturing the hidden dynamics of source data and contributing well to a combined regression and classification model. Our automation framework could surpass the drawbacks of conventional approaches and reduce the overhead expenses associated with a manual system. This framework could also be integrated into smart devices to assist vendors and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的安柏完成签到 ,获得积分10
4秒前
愉快西牛完成签到 ,获得积分10
5秒前
高大以南完成签到,获得积分10
7秒前
殷勤的凝海完成签到 ,获得积分10
8秒前
SY15732023811完成签到 ,获得积分10
8秒前
9秒前
科研女仆完成签到 ,获得积分10
9秒前
木又完成签到 ,获得积分10
11秒前
舒适映寒完成签到,获得积分10
11秒前
山止川行完成签到,获得积分10
12秒前
12秒前
朱祥龙完成签到,获得积分10
14秒前
LZR发布了新的文献求助10
14秒前
科研通AI5应助nini采纳,获得10
15秒前
mawenting完成签到 ,获得积分10
17秒前
dldldl完成签到,获得积分10
17秒前
18秒前
cdercder应助科研通管家采纳,获得10
21秒前
ZJakariae应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
了凡完成签到 ,获得积分10
24秒前
showmaker发布了新的文献求助10
30秒前
安澜完成签到,获得积分10
32秒前
盼盼完成签到,获得积分10
34秒前
快乐小狗完成签到 ,获得积分10
35秒前
40秒前
chi完成签到 ,获得积分10
40秒前
叶子完成签到 ,获得积分10
41秒前
Roy完成签到,获得积分10
42秒前
关中人完成签到,获得积分10
42秒前
suiyaoyi完成签到,获得积分10
42秒前
璇璇完成签到 ,获得积分10
43秒前
苏夏完成签到 ,获得积分10
44秒前
求助完成签到,获得积分10
44秒前
jason发布了新的文献求助10
45秒前
vagabond完成签到 ,获得积分10
50秒前
奔跑的青霉素完成签到 ,获得积分10
51秒前
酷酷的树叶完成签到 ,获得积分10
52秒前
showmaker完成签到,获得积分10
53秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402465
捐赠科研通 3077245
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743