Light-stimulated low-power artificial synapse based on a single GaN nanowire for neuromorphic computing

神经形态工程学 突触 计算机科学 材料科学 突触重量 纳米线 长时程增强 神经科学 人工智能 光电子学 人工神经网络 化学 生物 生物化学 受体
作者
Min Zhou,Yukun Zhao,Xiushuo Gu,Qianyi Zhang,Jianya Zhang,Min Jiang,Shulong Lu
出处
期刊:Photonics Research [Optica Publishing Group]
卷期号:11 (10): 1667-1667 被引量:8
标识
DOI:10.1364/prj.487936
摘要

The fast development of the brain-inspired neuromorphic computing system has ignited an urgent demand for artificial synapses with low power consumption. In this work, it is the first time a light-stimulated low-power synaptic device based on a single GaN nanowire has been demonstrated successfully. In such an artificial synaptic device, the incident light, the electrodes, and the light-generated carriers play the roles of action potential, presynaptic/postsynaptic membrane, and neurotransmitter in a biological synapse, respectively. Compared to those of other synaptic devices based on GaN materials, the energy consumption of the single-GaN-nanowire synaptic device can be reduced by more than 92%, reaching only 2.72×10 −12 J. It is proposed that the oxygen element can contribute to the synaptic characteristics by taking the place of the nitrogen site. Moreover, it is found that the dynamic “learning−forgetting” performance of the artificial synapse can resemble the behavior of the human brain, where less time is required to relearn the missing information previously memorized and the memories can be strengthened after relearning. Based on the experimental conductance for long-term potentiation (LTP) and long-term depression (LTD), the simulated network can achieve a high recognition rate up to 90% after only three training epochs. Such few training times can reduce the energy consumption in the supervised learning processes substantially. Therefore, this work paves an effective way for developing single-nanowire-based synapses in the fields of artificial intelligence systems and neuromorphic computing technology requiring low-power consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Qkk完成签到,获得积分10
1秒前
CodeCraft应助xmhxpz采纳,获得10
1秒前
Fayth完成签到,获得积分10
1秒前
香蕉觅云应助cicicixi采纳,获得10
2秒前
明亮的藏花完成签到,获得积分10
2秒前
srryw完成签到,获得积分10
2秒前
丁静完成签到 ,获得积分10
2秒前
圆锥香蕉应助都美秋采纳,获得20
2秒前
左旋多巴完成签到,获得积分10
2秒前
ArcMayuri发布了新的文献求助10
3秒前
3秒前
木子李发布了新的文献求助30
3秒前
荆轲刺秦王完成签到 ,获得积分10
4秒前
4秒前
汉堡包应助苏6采纳,获得10
4秒前
手术刀发布了新的文献求助10
4秒前
5秒前
完美世界应助窝窝头采纳,获得10
5秒前
阳光的牛牛完成签到,获得积分10
6秒前
Qkk发布了新的文献求助10
6秒前
khanly发布了新的文献求助10
6秒前
吃面不加醋完成签到,获得积分10
6秒前
Proddy发布了新的文献求助10
6秒前
Min完成签到,获得积分10
6秒前
JamesPei应助逃跑的炸鸡采纳,获得10
7秒前
gao发布了新的文献求助10
7秒前
7秒前
OIC发布了新的文献求助10
7秒前
科研通AI6应助七元全采纳,获得30
7秒前
OOOorange完成签到,获得积分10
7秒前
8秒前
8秒前
浮游应助明亮的藏花采纳,获得10
8秒前
zyx发布了新的文献求助10
8秒前
ljzhhh完成签到,获得积分10
8秒前
8秒前
科研通AI6应助鳗鱼蛋挞采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034