Head Pose Estimation Patterns as Deepfake Detectors

计算机科学 人工智能 主管(地质) 估计 计算机视觉 探测器 姿势 计算机图形学(图像) 地质学 地貌学 管理 电信 经济
作者
Federico Becattini,Carmen Bisogni,Vincenzo Loia,Chiara Pero,Fei Hao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (11): 1-24 被引量:11
标识
DOI:10.1145/3612928
摘要

The capacity to create “fake” videos has recently raised concerns about the reliability of multimedia content. Identifying between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the most performant approaches on the state-of-the-art. Finally, using a machine learning technique based on K-Nearest Neighbor and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also offer a set of experiments for examining the feasibility of using deep learning techniques on such patterns. The findings reveal that the ability to recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset that presents both identity swap and expression swap examples. The findings show that FSA-Net is an effective feature extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison to deepfake videos created using various methods or for different goals. In the mean the method obtain 86% of accuracy on the identity swap task and 86.5% of accuracy on the expression swap. These findings offer up various possibilities and future directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助打地鼠工人采纳,获得10
3秒前
3秒前
张弘完成签到,获得积分20
4秒前
4秒前
5秒前
Wu发布了新的文献求助10
6秒前
善学以致用应助本喵不怂采纳,获得10
7秒前
7秒前
8秒前
9秒前
SciGPT应助大人采纳,获得10
10秒前
hahhahahh发布了新的文献求助10
10秒前
科目三应助萨尔莫斯采纳,获得10
11秒前
璐璐完成签到,获得积分10
11秒前
我是老大应助zyy621采纳,获得20
11秒前
12秒前
武雨寒发布了新的文献求助10
12秒前
xiaobai发布了新的文献求助10
13秒前
13秒前
chd完成签到 ,获得积分10
13秒前
14秒前
SciGPT应助mortal采纳,获得10
15秒前
李健的小迷弟应助Tempo采纳,获得10
15秒前
快乐顽童完成签到,获得积分10
16秒前
无限的葶发布了新的文献求助10
17秒前
duou发布了新的文献求助10
17秒前
JamesPei应助姜鹏采纳,获得10
18秒前
20秒前
青蛙的第二滴口水完成签到,获得积分10
22秒前
无限的葶完成签到,获得积分20
22秒前
淡定谷蓝发布了新的文献求助10
22秒前
鼠小姐应助小黑板采纳,获得10
23秒前
23秒前
丘比特应助Tempo采纳,获得10
23秒前
24秒前
房房房破防啦完成签到,获得积分10
24秒前
27秒前
捉一只小鱼完成签到 ,获得积分10
28秒前
28秒前
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800648
求助须知:如何正确求助?哪些是违规求助? 3345931
关于积分的说明 10327683
捐赠科研通 3062411
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807318
科研通“疑难数据库(出版商)”最低求助积分说明 763627