Optimal monitoring and attack detection of networks modeled by Bayesian attack graphs

计算机科学 概率逻辑 贝叶斯网络 网络安全 模型攻击 网络拓扑 卡尔曼滤波器 计算机安全 人工智能 计算机网络
作者
Armita Kazeminajafabadi,Mahdi Imani
出处
期刊:Cybersecurity [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1186/s42400-023-00155-y
摘要

Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIN完成签到,获得积分10
1秒前
抱小熊睡觉完成签到,获得积分10
1秒前
情怀应助PaoPao采纳,获得10
1秒前
一一应助ew采纳,获得10
2秒前
mayi完成签到,获得积分10
2秒前
3秒前
hui完成签到,获得积分10
3秒前
雪茶完成签到,获得积分10
4秒前
4秒前
4秒前
甜甜迎南完成签到,获得积分10
5秒前
现代雁凡关注了科研通微信公众号
7秒前
酷波er应助念九采纳,获得10
7秒前
橘子发布了新的文献求助10
8秒前
江璃发布了新的文献求助10
8秒前
8秒前
汉堡包应助可爱的石头采纳,获得30
8秒前
mojito发布了新的文献求助10
8秒前
9秒前
10秒前
罐罐儿应助Tonald Yang采纳,获得10
10秒前
ZhaoY完成签到,获得积分10
10秒前
棠真应助zhaoying采纳,获得10
10秒前
聪慧的中心完成签到 ,获得积分20
11秒前
11秒前
11秒前
11秒前
12秒前
Siri烤布蕾发布了新的文献求助10
12秒前
12秒前
jogrgr完成签到,获得积分10
12秒前
能干寻桃完成签到 ,获得积分10
12秒前
Dal发布了新的文献求助10
13秒前
14秒前
hzhang完成签到,获得积分10
15秒前
laissez_fairy完成签到,获得积分10
15秒前
FYF完成签到 ,获得积分20
15秒前
天气好的话完成签到,获得积分10
16秒前
独木舟完成签到,获得积分10
16秒前
xiaohe发布了新的文献求助10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692