Temperature Drift Compensation of Fiber Optic Gyroscopes Based on an Improved Method

光纤陀螺 比例因子(宇宙学) 控制理论(社会学) 噪音(视频) 陀螺仪 信号(编程语言) 卡尔曼滤波器 工程类 计算机科学 物理 人工智能 空间的度量展开 图像(数学) 航空航天工程 量子力学 暗能量 程序设计语言 控制(管理) 宇宙学
作者
Xinwang Wang,Ying Cui,Huiliang Cao
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:14 (9): 1712-1712 被引量:4
标识
DOI:10.3390/mi14091712
摘要

This study proposes an improved multi-scale permutation entropy complete ensemble empirical mode decomposition with adaptive noise (MPE-CEEMDAN) method based on adaptive Kalman filter (AKF) and grey wolf optimizer-least squares support vector machine (GWO-LSSVM). By establishing a temperature compensation model, the gyro temperature output signal is optimized and reconstructed, and a gyro output signal is obtained with better accuracy. Firstly, MPE-CEEMDAN is used to decompose the FOG output signal into several intrinsic mode functions (IMFs); then, the IMFs signal is divided into mixed noise, temperature drift, and other noise according to different frequencies. Secondly, the AKF method is used to denoise the mixed noise. Thirdly, in order to denoise the temperature drift, the fiber gyroscope temperature compensation model is established based on GWO-LSSVM, and the signal without temperature drift is obtained. Finally, the processed mixed noise, the processed temperature drift, the processed other noise, and the signal-dominated IMFs are reconstructed to acquire the improved output signal. The experimental results show that, by using the improved method, the output of a fiber optic gyroscope (FOG) ranging from -30 °C to 60 °C decreases, and the temperature drift dramatically declines. The factor of quantization noise (Q) reduces from 6.1269 × 10-3 to 1.0132 × 10-4, the factor of bias instability (B) reduces from 1.53 × 10-2 to 1 × 10-3, and the factor of random walk of angular velocity (N) reduces from 7.8034 × 10-4 to 7.2110 × 10-6. The improved algorithm can be adopted to denoise the output signal of the FOG with higher accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助开放从波采纳,获得10
刚刚
wanghuihui完成签到,获得积分20
1秒前
科研通AI5应助moonman采纳,获得10
1秒前
aaronpancn发布了新的文献求助10
1秒前
称心太阳发布了新的文献求助10
5秒前
慕青应助土又鸟采纳,获得10
5秒前
zino发布了新的文献求助10
5秒前
关包子发布了新的文献求助10
6秒前
shaoshao86完成签到,获得积分10
6秒前
8秒前
suga完成签到,获得积分20
8秒前
9秒前
123发布了新的文献求助10
13秒前
13秒前
14秒前
直率虔完成签到,获得积分10
15秒前
伶俜完成签到 ,获得积分10
17秒前
谨慎乌完成签到,获得积分10
17秒前
张晓宇关注了科研通微信公众号
17秒前
Rinsana完成签到,获得积分10
17秒前
pluto完成签到 ,获得积分10
17秒前
刘倩雯发布了新的文献求助10
17秒前
orixero应助zxm采纳,获得10
17秒前
18秒前
关包子完成签到,获得积分10
18秒前
19秒前
chenry发布了新的文献求助10
20秒前
哈哈发布了新的文献求助10
21秒前
火星上仰完成签到,获得积分10
21秒前
chuo0004完成签到,获得积分10
22秒前
22秒前
Mifabric完成签到,获得积分10
23秒前
科研通AI5应助123采纳,获得10
24秒前
鱼遇完成签到,获得积分10
27秒前
29秒前
小巧的巨人关注了科研通微信公众号
30秒前
慕青应助江屿采纳,获得10
31秒前
姚琛完成签到 ,获得积分10
32秒前
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836309
求助须知:如何正确求助?哪些是违规求助? 3378623
关于积分的说明 10505359
捐赠科研通 3098262
什么是DOI,文献DOI怎么找? 1706407
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772382